Unknown

Dataset Information

0

Salinity Effects on Guard Cell Proteome in Chenopodium quinoa.


ABSTRACT: Epidermal fragments enriched in guard cells (GCs) were isolated from the halophyte quinoa (Chenopodium quinoa Wild.) species, and the response at the proteome level was studied after salinity treatment of 300 mM NaCl for 3 weeks. In total, 2147 proteins were identified, of which 36% were differentially expressed in response to salinity stress in GCs. Up and downregulated proteins included signaling molecules, enzyme modulators, transcription factors and oxidoreductases. The most abundant proteins induced by salt treatment were desiccation-responsive protein 29B (50-fold), osmotin-like protein OSML13 (13-fold), polycystin-1, lipoxygenase, alpha-toxin, and triacylglycerol lipase (PLAT) domain-containing protein 3-like (eight-fold), and dehydrin early responsive to dehydration (ERD14) (eight-fold). Ten proteins related to the gene ontology term "response to ABA" were upregulated in quinoa GC; this included aspartic protease, phospholipase D and plastid-lipid-associated protein. Additionally, seven proteins in the sucrose-starch pathway were upregulated in the GC in response to salinity stress, and accumulation of tryptophan synthase and L-methionine synthase (enzymes involved in the amino acid biosynthesis) was observed. Exogenous application of sucrose and tryptophan, L-methionine resulted in reduction in stomatal aperture and conductance, which could be advantageous for plants under salt stress. Eight aspartic proteinase proteins were highly upregulated in GCs of quinoa, and exogenous application of pepstatin A (an inhibitor of aspartic proteinase) was accompanied by higher oxidative stress and extremely low stomatal aperture and conductance, suggesting a possible role of aspartic proteinase in mitigating oxidative stress induced by saline conditions.

SUBMITTER: Rasouli F 

PROVIDER: S-EPMC7794931 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Salinity Effects on Guard Cell Proteome in <i>Chenopodium quinoa</i>.

Rasouli Fatemeh F   Kiani-Pouya Ali A   Shabala Lana L   Li Leiting L   Tahir Ayesha A   Yu Min M   Hedrich Rainer R   Chen Zhonghua Z   Wilson Richard R   Zhang Heng H   Shabala Sergey S  

International journal of molecular sciences 20210104 1


Epidermal fragments enriched in guard cells (GCs) were isolated from the halophyte quinoa (<i>Chenopodium quinoa</i> Wild.) species, and the response at the proteome level was studied after salinity treatment of 300 mM NaCl for 3 weeks. In total, 2147 proteins were identified, of which 36% were differentially expressed in response to salinity stress in GCs. Up and downregulated proteins included signaling molecules, enzyme modulators, transcription factors and oxidoreductases. The most abundant  ...[more]

Similar Datasets

2023-04-27 | PXD022693 | Pride
| S-EPMC6024323 | biostudies-literature
| S-EPMC9530330 | biostudies-literature
| S-EPMC10380837 | biostudies-literature
| S-EPMC5762895 | biostudies-literature
| S-EPMC8707205 | biostudies-literature
| S-EPMC7179108 | biostudies-literature
| PRJNA939353 | ENA
| PRJNA663769 | ENA
| PRJNA1044562 | ENA