Abstinence from ethanol dependence produces concomitant cortical gray matter abnormalities, microstructural deficits and cognitive dysfunction.
Ontology highlight
ABSTRACT: Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence (CIE-PA) produces significant alterations in oligodendrogenesis in the rodent medial prefrontal cortex (mPFC). Specifically, CIE-PA produced an unprecedented increase in premyelinating oligodendroglial progenitor cells and myelin, which have been associated with persistent elevated drinking behaviors during abstinence. The current study used neuroimaging and electron microscopy to evaluate the integrity of enhanced myelin and microstructural deficits underlying enhanced myelination in the mPFC in male rats experiencing forced abstinence for 1 day (D), 7D, 21D and 42D following seven weeks of CIE. In vivo diffusion tensor imaging (DTI) detected altered microstructural integrity in the mPFC and corpus callosum (CC). Altered integrity was characterized as reduced fractional anisotropy (FA) in the CC, and enhanced mean diffusivity (MD) in the mPFC in 7D abstinent rats. Increased MD occurred concomitantly with increases in myelin associated proteins, flayed myelin and enhanced mitochondrial stress in the mPFC in 7D abstinent rats, suggesting that the increases in myelination during abstinence was aberrant. Evaluation of cognitive performance via Pavlovian conditioning in 7D abstinent rats revealed reduced retrieval and recall of fear memories dependent on the mPFC. These findings indicate that forced abstinence from moderate to severe alcohol use disorder produces gray matter damage via myelin dysfunction in the mPFC and that these microstructural changes were associated with deficits in PFC dependent behaviors.
SUBMITTER: Somkuwar SS
PROVIDER: S-EPMC7797163 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA