Cellular chaining influences biofilm formation and structure in group A Streptococcus.
Ontology highlight
ABSTRACT: Group A Streptococcal (GAS) biofilm formation is an important pathological feature contributing to the antibiotic tolerance and progression of various GAS infections. Although a number of bacterial factors have been described to promote in vitro GAS biofilm formation, the relevance of in vitro biofilms to host-associated biofilms requires further understanding. In this study, we demonstrate how constituents of the host environment, such as lysozyme and NaCl, can modulate GAS bacterial chain length and, in turn, shape GAS biofilm morphology and structure. Disruption of GAS chains with lysozyme results in biofilms that are more stable. Based on confocal microscopy, we attribute the increase in biofilm stability to a dense and compact three-dimensional structure produced by de-chained cells. To show that changes in biofilm stability and structure are due to the shortening of bacterial chains and not specific to the activity of lysozyme, we demonstrate that augmented chaining induced by NaCl or deletion of the autolysin gene mur1.2 produced defects in biofilm formation characterized by a loose biofilm architecture. We conclude that GAS biofilm formation can be directly influenced by host and environmental factors through the modulation of bacterial chain length, potentially contributing to persistence and colonization within the host. Further studies of in vitro biofilm models incorporating physiological constituents such as lysozyme may uncover new insights into the physiology of in vivo GAS biofilms.
SUBMITTER: Matysik A
PROVIDER: S-EPMC7798446 | biostudies-literature | 2020 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA