Unknown

Dataset Information

0

Endothelial Reprogramming by Disturbed Flow Revealed by Single-Cell RNA and Chromatin Accessibility Study.


ABSTRACT: Disturbed flow (d-flow) induces atherosclerosis by regulating gene expression in endothelial cells (ECs). For further mechanistic understanding, we carried out a single-cell RNA sequencing (scRNA-seq) and scATAC-seq study using endothelial-enriched single cells from the left- and right carotid artery exposed to d-flow (LCA) and stable-flow (s-flow in RCA) using the mouse partial carotid ligation (PCL) model. We find eight EC clusters along with immune cells, fibroblasts, and smooth muscle cells. Analyses of marker genes, pathways, and pseudotime reveal that ECs are highly heterogeneous and plastic. D-flow induces a dramatic transition of ECs from atheroprotective phenotypes to pro-inflammatory cells, mesenchymal (EndMT) cells, hematopoietic stem cells, endothelial stem/progenitor cells, and an unexpected immune cell-like (EndICLT) phenotypes. While confirming KLF4/KLF2 as an s-flow-sensitive transcription factor binding site, we also find those sensitive to d-flow (RELA, AP1, STAT1, and TEAD1). D-flow reprograms ECs from atheroprotective to proatherogenic phenotypes, including EndMT and potentially EndICLT.

SUBMITTER: Andueza A 

PROVIDER: S-EPMC7801938 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Endothelial Reprogramming by Disturbed Flow Revealed by Single-Cell RNA and Chromatin Accessibility Study.

Andueza Aitor A   Kumar Sandeep S   Kim Juyoung J   Kang Dong-Won DW   Mumme Hope L HL   Perez Julian I JI   Villa-Roel Nicolas N   Jo Hanjoong H  

Cell reports 20201201 11


Disturbed flow (d-flow) induces atherosclerosis by regulating gene expression in endothelial cells (ECs). For further mechanistic understanding, we carried out a single-cell RNA sequencing (scRNA-seq) and scATAC-seq study using endothelial-enriched single cells from the left- and right carotid artery exposed to d-flow (LCA) and stable-flow (s-flow in RCA) using the mouse partial carotid ligation (PCL) model. We find eight EC clusters along with immune cells, fibroblasts, and smooth muscle cells.  ...[more]

Similar Datasets

| S-EPMC7486102 | biostudies-literature
| S-EPMC10835041 | biostudies-literature
| S-EPMC7904839 | biostudies-literature
| S-EPMC6821224 | biostudies-literature
| S-EPMC8290019 | biostudies-literature
| S-EPMC8794471 | biostudies-literature
| S-EPMC8365218 | biostudies-literature
| S-EPMC8602754 | biostudies-literature
| S-EPMC6057489 | biostudies-literature
| S-EPMC6180508 | biostudies-literature