Unknown

Dataset Information

0

Time-frequency super-resolution with superlets.


ABSTRACT: Due to the Heisenberg-Gabor uncertainty principle, finite oscillation transients are difficult to localize simultaneously in both time and frequency. Classical estimators, like the short-time Fourier transform or the continuous-wavelet transform optimize either temporal or frequency resolution, or find a suboptimal tradeoff. Here, we introduce a spectral estimator enabling time-frequency super-resolution, called superlet, that uses sets of wavelets with increasingly constrained bandwidth. These are combined geometrically in order to maintain the good temporal resolution of single wavelets and gain frequency resolution in upper bands. The normalization of wavelets in the set facilitates exploration of data with scale-free, fractal nature, containing oscillation packets that are self-similar across frequencies. Superlets perform well on synthetic data and brain signals recorded in humans and rodents, resolving high frequency bursts with excellent precision. Importantly, they can reveal fast transient oscillation events in single trials that may be hidden in the averaged time-frequency spectrum by other methods.

SUBMITTER: Moca VV 

PROVIDER: S-EPMC7803992 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Time-frequency super-resolution with superlets.

Moca Vasile V VV   Bârzan Harald H   Nagy-Dăbâcan Adriana A   Mureșan Raul C RC  

Nature communications 20210112 1


Due to the Heisenberg-Gabor uncertainty principle, finite oscillation transients are difficult to localize simultaneously in both time and frequency. Classical estimators, like the short-time Fourier transform or the continuous-wavelet transform optimize either temporal or frequency resolution, or find a suboptimal tradeoff. Here, we introduce a spectral estimator enabling time-frequency super-resolution, called superlet, that uses sets of wavelets with increasingly constrained bandwidth. These  ...[more]

Similar Datasets

| S-EPMC5356014 | biostudies-literature
| S-EPMC7813875 | biostudies-literature
| S-EPMC7138805 | biostudies-literature
| S-EPMC9710882 | biostudies-literature
| S-EPMC5367886 | biostudies-literature
| S-EPMC9672042 | biostudies-literature
| S-EPMC2859093 | biostudies-literature
| S-EPMC6473507 | biostudies-literature
| S-EPMC7394708 | biostudies-literature
| S-EPMC8156588 | biostudies-literature