Unknown

Dataset Information

0

Integrated Cognitive Architecture for Robot Learning of Action and Language.


ABSTRACT: The manner in which humans learn, plan, and decide actions is a very compelling subject. Moreover, the mechanism behind high-level cognitive functions, such as action planning, language understanding, and logical thinking, has not yet been fully implemented in robotics. In this paper, we propose a framework for the simultaneously comprehension of concepts, actions, and language as a first step toward this goal. This can be achieved by integrating various cognitive modules and leveraging mainly multimodal categorization by using multilayered multimodal latent Dirichlet allocation (mMLDA). The integration of reinforcement learning and mMLDA enables actions based on understanding. Furthermore, the mMLDA, in conjunction with grammar learning and based on the Bayesian hidden Markov model (BHMM), allows the robot to verbalize its own actions and understand user utterances. We verify the potential of the proposed architecture through experiments using a real robot.

SUBMITTER: Miyazawa K 

PROVIDER: S-EPMC7805838 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integrated Cognitive Architecture for Robot Learning of Action and Language.

Miyazawa Kazuki K   Horii Takato T   Aoki Tatsuya T   Nagai Takayuki T  

Frontiers in robotics and AI 20191129


The manner in which humans learn, plan, and decide actions is a very compelling subject. Moreover, the mechanism behind high-level cognitive functions, such as action planning, language understanding, and logical thinking, has not yet been fully implemented in robotics. In this paper, we propose a framework for the simultaneously comprehension of concepts, actions, and language as a first step toward this goal. This can be achieved by integrating various cognitive modules and leveraging mainly m  ...[more]

Similar Datasets

| S-EPMC8421643 | biostudies-literature
| S-EPMC7806035 | biostudies-literature
| S-EPMC8346448 | biostudies-literature
| S-EPMC4641699 | biostudies-literature
| S-EPMC8210683 | biostudies-literature
| S-EPMC7731687 | biostudies-literature
| S-EPMC7805941 | biostudies-literature
2016-01-07 | E-GEOD-76612 | biostudies-arrayexpress
| S-EPMC4589520 | biostudies-other
| S-EPMC5376586 | biostudies-other