Unknown

Dataset Information

0

Estimating the accuracy of calculated electron paramagnetic resonance hyperfine couplings for a lytic polysaccharide monooxygenase.


ABSTRACT: Lytic polysaccharide monooxygenases (LPMOs) are enzymes that bind polysaccharides followed by an (oxidative) disruption of the polysaccharide surface, thereby boosting depolymerization. The binding process between the LPMO catalytic domain and polysaccharide is key to the mechanism and establishing structure-function relationships for this binding is therefore crucial. The hyperfine coupling constants (HFCs) from EPR spectroscopy have proven useful for this purpose. Unfortunately, EPR does not provide direct structural data and therefore the experimental EPR parameters have to be supported with parameters calculated with density functional theory. Yet, calculated HFCs are extremely sensitive to the employed computational setup. Using the LPMO Ls(AA9)A catalytic domain, we here quantify the importance of several choices in the computational setup, ranging from the use of specialized basis, the underlying structures, and the employed exchange-correlation functional. We show that specialized basis sets are an absolute necessity, and also that care has to be taken in the optimization of the underlying structure: only by allowing large parts of the protein around the active site to structurally relax could we obtain results that uniformly reproduced experimental trends. We compare our results to previously published X-ray structures and experimental HFCs for Ls(AA9)A as well as to recent experimental/theoretical results for another (AA10) family of LPMOs.

SUBMITTER: Theibich YA 

PROVIDER: S-EPMC7807142 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Estimating the accuracy of calculated electron paramagnetic resonance hyperfine couplings for a lytic polysaccharide monooxygenase.

Theibich Yusuf A YA   Sauer Stephan P A SPA   Leggio Leila Lo LL   Hedegård Erik D ED  

Computational and structural biotechnology journal 20201220


Lytic polysaccharide monooxygenases (LPMOs) are enzymes that bind polysaccharides followed by an (oxidative) disruption of the polysaccharide surface, thereby boosting depolymerization. The binding process between the LPMO catalytic domain and polysaccharide is key to the mechanism and establishing structure-function relationships for this binding is therefore crucial. The hyperfine coupling constants (HFCs) from EPR spectroscopy have proven useful for this purpose. Unfortunately, EPR does not p  ...[more]

Similar Datasets

| S-EPMC9131454 | biostudies-literature
| S-EPMC6894463 | biostudies-literature
| S-EPMC6404106 | biostudies-literature
| S-EPMC7072406 | biostudies-literature
| S-EPMC5787815 | biostudies-literature
| S-EPMC7078924 | biostudies-literature
| S-EPMC5651836 | biostudies-literature
| S-EPMC6334667 | biostudies-literature
| S-EPMC7818652 | biostudies-literature
| S-EPMC5865291 | biostudies-literature