Ontology highlight
ABSTRACT: Background and purpose
In proton therapy, inter-fractional density changes can severely compromise the effective delivery of the planned dose. Such dose distortion effects can be accounted for by treatment plan adaptation, that requires considerable automation for widespread implementation in clinics. In this study, the clinical benefit of an automatic online adaptive strategy called dose restoration (DR) was investigated. Our objective was to assess to what extent DR could replace the need for a comprehensive offline adaptive strategy.Materials and methods
The fully automatic and robust DR workflow was evaluated in a cohort of 14 lung IMPT patients that had a planning-CT and two repeated 4D-CTs (rCT1,rCT2). Initial plans were generated using 4D-robust optimization (including breathing-motion, setup and range errors). DR relied on isodose contours generated from the initial dose and associated patient specific weighted objectives to mimic this initial dose in repeated-CTs. These isodose contours, with their corresponding objectives, were used during re-optimization to compensate proton range distortions disregarding re-contouring. Robustness evaluations were performed for the initial, not-adapted and restored (adapted) plans.Results
The resulting DVH-bands showed overall improvement in DVH metrics and robustness levels for restored plans, with respect to not-adapted plans. According to CTV coverage criteria (D95%>95%Dprescription) in not-adapted plans, 35% (5/14) of the cases needed offline adaptation. After DR, Median(D95%) was increased by 1.1 [IQR,0.4] Gy and only one patient out of 14 (7%) still needed offline adaptation because of important anatomical changes.Conclusions
DR has the potential to improve CTV coverage and reduce offline adaptation rate.
SUBMITTER: Borderias Villarroel E
PROVIDER: S-EPMC7807540 | biostudies-literature | 2020 Jul
REPOSITORIES: biostudies-literature
Borderías Villarroel Elena E Geets Xavier X Sterpin Edmond E
Physics and imaging in radiation oncology 20200713
<h4>Background and purpose</h4>In proton therapy, inter-fractional density changes can severely compromise the effective delivery of the planned dose. Such dose distortion effects can be accounted for by treatment plan adaptation, that requires considerable automation for widespread implementation in clinics. In this study, the clinical benefit of an automatic online adaptive strategy called dose restoration (DR) was investigated. Our objective was to assess to what extent DR could replace the n ...[more]