Project description:BACKGROUND:The anaplastic lymphoma kinase (ALK) gene fusion rearrangement is a potent oncogene, accounting for 2-7% of lung adenocarcinomas, with higher incidence (17-20%) in non-smokers. ALK-positive tumors are sensitive to ALK tyrosine kinase inhibitors (TKIs), thus ALK-positive non-small-cell lung cancer (NSCLC) is currently spearheading precision medicine in thoracic oncology, with three generations of approved ALK inhibitors in clinical practice. However, these treatments are eventually met with resistance. At the molecular level, ALK-positive NSCLC is of the lowest tumor mutational burden, which possibly accounts for the high initial response to TKIs. Nevertheless, TP53 co-mutations are relatively frequent and are associated with adverse outcome of crizotinib treatment, whereas utility of next-generation ALK inhibitors in TP53-mutant tumors is still unknown. METHODS:We report the case of an ALK-positive, TP53-mutant NSCLC patient with about five years survival on ALK TKIs with continued next-generation regimens upon progression. RESULTS:The tumor showed progression on crizotinib, but long tumor control was achieved following the incremental administration of next-generation ALK inhibitors, despite lack of evident resistance mechanisms. CONCLUSION:TP53 status should be taken into consideration when selecting ALK-inhibitor treatment for personalized therapies. In TP53-mutant tumors, switching TKI generations may overcome treatment exhaustion even in the absence of ALK-dependent resistance mechanisms.
Project description:Acquired resistance to targeted inhibitors remains a major, and inevitable, obstacle in the treatment of oncogene-addicted cancers. Newer-generation inhibitors may help overcome resistance mutations, and inhibitor combinations can target parallel pathways, but durable benefit to patients remains elusive in most clinical scenarios. Now, recent studies suggest a third approach may be available in some cases-exploitation of oncogene overexpression that may arise to promote resistance. Here, we discuss the importance of maintaining oncogenic signaling at "just-right" levels in cells, with too much signaling, or oncogene overdose, being potentially as detrimental as too little. This is highlighted in particular by recent studies of mutant-BRAF in melanoma and the fusion kinase nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) in anaplastic large cell lymphoma. Oncogene overdose may be exploitable to prolong tumor control through intermittent dosing in some cases, and studies of acute lymphoid leukemias suggest that it may be specifically pharmacologically inducible.
Project description:Drug resistance invariably limits the response of oncogene-addicted cancer cells to targeted therapy. The upregulation of signal transducer and activator of transcription 3 (STAT3) has been implicated as a mechanism of drug resistance in a range of oncogene-addicted cancers. However, the development of inhibitors against STAT3 has been fraught with challenges such as poor delivery or lack of specificity. Clinical experience with small molecule STAT3 inhibitors has seen efficacy signals, but this success has been tempered by drug limiting toxicities from off-target adverse events. It has emerged in recent years that, contrary to the Warburg theory, certain tumor types undergo metabolic reprogramming towards oxidative phosphorylation (OXPHOS) to satisfy their energy production. In particular, certain drug-resistant oncogene-addicted tumors have been found to rely on OXPHOS as a mechanism of survival. Multiple cellular signaling pathways converge on STAT3, hence the localization of STAT3 to the mitochondria may provide the link between oncogene-induced signaling pathways and cancer cell metabolism. In this article, we review the role of STAT3 and OXPHOS as targets of novel therapeutic strategies aimed at restoring drug sensitivity in treatment-resistant oncogene-addicted tumor types. Apart from drugs which have been re-purposed as OXPHOS inhibitors for-anti-cancer therapy (e.g., metformin and phenformin), several novel compounds in the drug-development pipeline have demonstrated promising pre-clinical and clinical activity. However, the clinical development of OXPHOS inhibitors remains in its infancy. The further identification of compounds with acceptable toxicity profiles, alongside the discovery of robust companion biomarkers of OXPHOS inhibition, would represent tangible early steps in transforming the therapeutic landscape of cancer cell metabolism.
Project description:Rhabdomyosarcoma (RMS) is one of the most common pediatric soft-tissue cancer. Previously, we discovered a gene fusion, MARS-AVIL formed by chromosomal inversion in RMS. Suspecting that forming a fusion with a housekeeping gene may be one of the mechanisms to dysregulate an oncogene, we investigated AVIL expression and its role in RMS. We first showed that MARS-AVIL translates into an in-frame fusion protein, which is critical for RMS cell tumorigenesis. Besides forming a gene fusion with the housekeeping gene, MARS, the AVIL locus is often amplified, and its RNA and protein expression are overexpressed in the majority of RMSs. Tumors with AVIL dysregulation exhibit evidence of oncogene addiction: Silencing MARS-AVIL in cells harboring the fusion, or silencing AVIL in cells with AVIL overexpression, nearly eradicated the cells in culture, as well as inhibited in vivo xenograft growth in mice. Conversely, gain-of-function manipulations of AVIL led to increased cell growth and migration, enhanced foci formation in mouse fibroblasts, and most importantly transformed mesenchymal stem cells in vitro and in vivo. Mechanistically, AVIL seems to serve as a converging node functioning upstream of two oncogenic pathways, PAX3-FOXO1 and RAS, thus connecting two types of RMS associated with these pathways. Interestingly, AVIL is overexpressed in other sarcoma cells as well, and its expression correlates with clinical outcomes, with higher levels of AVIL expression being associated with worse prognosis. AVIL is a bona fide oncogene in RMS, and RMS cells are addicted to its activity.
Project description:The introduction of targeted treatments and more recently immune checkpoint inhibitors (ICI) to the treatment of metastatic non-small cell lung cancer (NSCLC) has dramatically changed the prognosis of selected patients. For patients with oncogene-addicted metastatic NSCLC harbouring an epidermal growth factor receptor (EGFR) or v-Raf murine sarcoma viral oncogene homologue B1 (BRAF) mutation or an anaplastic lymphoma kinase (ALK) or ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) gene alteration (translocation, fusion, amplification) mutation-specific tyrosine kinase inhibitors (TKI) are already first-line standard treatment, while targeted treatment for other driver mutations affecting MET, RET, human epidermal growth factor receptor (HER) 2, tropomyosin receptor kinases (TRK) 1-3 and others are currently under investigation. The role of ICI in these patient subgroups is currently under debate. This article summarises a round-table discussion organised by ESMO Open in Vienna in July 2018. It reviews current clinical data on ICI treatment in patients with metastatic oncogene-addicted NSCLC and discusses molecular diagnostic assessment, potential biomarkers and radiological methods for response evaluation of ICI treatment. The round-table panel concluded ICI should only be considered in patients with oncogene-addicted NSCLC after exhaustion of effective targeted therapies and in some cases possibly after all other therapies including chemotherapies. More clinical trials on combination therapies and biomarkers for ICI therapy based on the specific differing characteristics of oncogene-addicted NSCLC need to be conducted.
Project description:Patients with non-small cell lung cancer, especially adenocarcinomas, harbour at least one oncogenic driver mutation that can potentially be a target for therapy. Treatments of these oncogene-addicted tumours, such as the use of tyrosine kinase inhibitors (TKIs) of mutated epidermal growth factor receptor, have dramatically improved the outcome of patients. However, some patients may acquire resistance to treatment early on after starting a targeted therapy. Transformations to other histotypes-small cell lung carcinoma, large cell neuroendocrine carcinoma, squamous cell carcinoma, and sarcomatoid carcinoma-have been increasingly recognised as important mechanisms of resistance and are increasingly becoming a topic of interest for all specialists involved in the diagnosis, management, and care of these patients. This article, after examining the most used TKI agents and their main biological activities, discusses histological and molecular transformations with an up-to-date review of all previous cases published in the field. Liquid biopsy and future research directions are also briefly discussed to offer the reader a complete and up-to-date overview of the topic.