Project description:Dynamic myraidpro contrast-enhanced magnetic resonance imaging (DCE-MRI) has been correlated with prognosis in head and neck squamous cell carcinoma as well as with changes in normal tissues. These studies implement different software, either commercial or in-house, and different scan protocols. Thus, the generalizability of the results is not confirmed. To assist in the standardization of quantitative metrics to confirm the generalizability of these previous studies, this data descriptor delineates in detail the DCE-MRI digital imaging and communications in medicine (DICOM) files with DICOM radiation therapy (RT) structure sets and digital reference objects (DROs), as well as, relevant clinical data that encompass a data set that can be used by all software for comparing quantitative metrics. Variable flip angle (VFA) with six flip angles and DCE-MRI scans with a temporal resolution of 5.5 s were acquired in the axial direction on a 3T MR scanner with a field of view of 25.6 cm, slice thickness of 4 mm, and 256×256 matrix size.
Project description:These NCCN Guidelines Insights focus on recent updates to the 2015 NCCN Guidelines for Head and Neck (H&N) Cancers. These Insights describe the different types of particle therapy that may be used to treat H&N cancers, in contrast to traditional radiation therapy (RT) with photons (x-ray). Research is ongoing regarding the different types of particle therapy, including protons and carbon ions, with the goals of reducing the long-term side effects from RT and improving the therapeutic index. For the 2015 update, the NCCN H&N Cancers Panel agreed to delete recommendations for neutron therapy for salivary gland cancers, because of its limited availability, which has decreased over the past 2 decades; the small number of patients in the United States who currently receive this treatment; and concerns that the toxicity of neutron therapy may offset potential disease control advantages.
Project description:Head and neck cancers (HNCs) encompass a heterogeneous group of cancers between the mouth and larynx. Familial clustering in HNCs has been described, but how it influences individual sites and to which extent known risk factors, such as human papilloma virus (HPV) infection, may contribute is not well established. We employed standardized incidence ratios (SIRs) to estimate familial risks for HNC with same (concordant) and different (discordant) cancers among first-degree relatives using data from the Swedish Cancer Registry from 1958 to 2018. Incidence for male and female oropharyngeal cancer increased close to four-fold in the past 39 years. Familial HNC was found in 3.4% of the study population, with an overall familial SIR of 1.78. Patients with concordant nasopharyngeal cancer showed a high risk of 23.97, followed by hypopharyngeal cancer (5.43). The husbands of wives with cervical cancer had an increased risk of oropharyngeal cancer. Nasopharyngeal cancers lacked associations with lifestyle or HPV associated cancers, suggesting a role for germline genetics, which was also true for the high-risk families of three HNC patients. In the Swedish population with low smoking levels, HPV is becoming a dominant risk factor, emphasizing the need for sexual hygiene and HPV vaccination.
Project description:Checkpoint inhibitors have recently gained FDA approval for the treatment of cisplatin-resistant recurrent and metastatic head and neck squamous cell carcinoma (HNSCC) by outperforming standard of care chemotherapy and inducing durable responses in a subset of patients. These monoclonal antibodies unleash the patient's own immune system to target cancer cells. HNSCC is a good target for these agents as there is ample evidence of active immunosurveillance in the head and neck and a number of immune evasion mechanisms by which HNSCCs form progressive disease including via the PD-1/PD-L1 axis. As HNSCCs typically possess a moderately high mutation burden, they should express numerous mutation-derived antigen targets for immune detection. However, with response rates less than 20% in clinical trials, there is a need for biomarkers to screen patients as well as clinical trials evaluating novel combinations to improve outcomes. The aim of this review is to provide historical and mechanistic context for the use of checkpoint inhibitors in head and neck cancer and provide a perspective on the role of novel checkpoints, biomarkers, and combination therapies that are evolving in the near term for patients with HNSCC.
Project description:Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies.
Project description:In 2019, the FDA approved pembrolizumab, a monoclonal antibody targeting PD-1, for the first-line treatment of recurrent or metastatic head and neck cancers, despite only a limited number of patients benefiting from the treatment. Promising effects of therapeutic vaccination led the FDA to approve the use of the first therapeutic vaccine in prostate cancer in 2010. Research in the field of therapeutic vaccination, including possible synergistic effects with anti-PD(L)1 treatments, is evolving each year, and many vaccines are in pre-clinical and clinical studies. The aim of this review article is to discuss vaccines as a new therapeutic strategy, particularly in the field of head and neck cancers. Different vaccination technologies are discussed, as well as the results of the first clinical trials in HPV-positive, HPV-negative, and EBV-induced head and neck cancers.
Project description:Depth-resolved label-free optical imaging by the method of multiphoton autofluorescence microscopy (MPAM) may offer new ways to examine cellular and extracellular atypia associated with epithelial squamous cell carcinoma (SCC). MPAM was evaluated for its ability to identify cellular and microstructural atypia in head and neck tissues from resected discarded tumor tissue. Three-dimensional image volumes were obtained from tissues from the floor of the mouth, tongue, and larynx, and were then processed for histology. MPAM micrographs were evaluated for qualitative metrics of cell atypia and quantitative measures associated with nuclear pleomorphism. Statistical analyses correlated MPAM endpoints with histological grade from each imaged site. Cellular overcrowding, discohesion, anisonucleosis, and multinucleated cells, as observed through MPAM, were found to be statistically associated with dysplasia and SCC grading, but not in histologically benign regions. A quantitative measure of the coefficient of variance in nuclear size in SCC and dysplasia was statistically elevated above histologically benign regions. MPAM also allowed for the identification of cellular heterogeneity across transitional areas and other features, such as inflammatory infiltrates. In the future, MPAM could be evaluated for the non-invasive detection of neoplasia, possibly as an adjunct to traditional conventional examination and biopsy.
Project description:Head and neck cancer management requires multidisciplinary approach in which radical surgery with or without flap reconstructions and neck dissection, along with radiotherapy (RT)/chemoradiotherapy (CRT) serve as the key components. Neoadjuvant chemotherapy and immunotherapy are used in selected cases based on the institutional preference. Knowledge of expected post-treatment changes on imaging is essential to differentiate it from recurrence. In addition, awareness of various post-treatment complications is imperative for their early detection on imaging. Distorted anatomy after treatment poses diagnostic challenge, hence, proper choice of imaging modality and appropriate timing of scan is pertinent for accurate post-treatment evaluation. In this article, we have comprehensively reviewed expected post-treatment appearances and complications on imaging. We have discussed imaging appearances of recurrences at the primary and lymphnodal sites and discussed documentation of findings using Neck Imaging Reporting and Data Systems (NI-RADS). We have also delved into the patterns of recurrence in human papillomavirus (HPV) positive HNSCC. Furthermore, we have provided flowcharts and discussed recommendations on the site-specific and treatment-related imaging modalities to be used along with their appropriate timing, for adequate evaluation of HNSCC after treatment. In addition, we have also touched upon the role of advanced imaging techniques for post-treatment HNSCC evaluation.
Project description:Head and neck cancer continues to be among the most prevalent types of cancer globally, yet it can be managed with appropriate treatment approaches. Presently, chemotherapy and radiotherapy stand as the primary treatment modalities for various groups and regions affected by head and neck cancer. Nonetheless, these treatments are linked to adverse side effects in patients. Moreover, due to tumor resistance to multiple drugs (both intrinsic and extrinsic) and radiotherapy, along with numerous other factors, recurrences or metastases often occur. Electrochemotherapy (ECT) emerges as a clinically proven alternative that offers high efficacy, localized effect, and diminished negative factors. Electrochemotherapy involves the treatment of solid tumors by combining a non-permeable cytotoxic drug, such as bleomycin, with a locally administered pulsed electric field (PEF). It is crucial to employ this method effectively by utilizing optimal PEF protocols and drugs at concentrations that do not possess inherent cytotoxic properties. This review emphasizes an examination of diverse clinical practices of ECT concerning head and neck cancer. It specifically delves into the treatment procedure, the choice of anti-cancer drugs, pre-treatment planning, PEF protocols, and electroporation electrodes as well as the efficacy of tumor response to the treatment and encountered obstacles. We have also highlighted the significance of assessing the spatial electric field distribution in both tumor and adjacent tissues prior to treatment as it plays a pivotal role in determining treatment success. Finally, we compare the ECT methodology to conventional treatments to highlight the potential for improvement and to facilitate popularization of the technique in the area of head and neck cancers where it is not widespread yet while it is not the case with other cancer types.
Project description:The majority of studies on human cancers published to date focus on coding genes. More recently, however, non-coding RNAs (ncRNAs) are gaining growing recognition as important regulatory components. Here we characterise the ncRNA landscape in 442 head and neck squamous cell carcinomas (HNSCs) from the cancer genome atlas (TCGA). HNSCs represent an intriguing case to study the potential role of ncRNA as a function of viral presence, especially as HPV is potentially oncogenic. Thus, we identify HPV16-positive (HPV16+) and HPV-negative (HPV-) tumours and study the expression of ncRNAs on both groups. Overall, the ncRNAs comprise 36% of all differentially expressed genes, with antisense RNAs being the most represented ncRNA type (12.6%). Protein-coding genes appear to be more frequently downregulated in tumours compared with controls, whereas ncRNAs show significant upregulation in tumours, especially in HPV16+ tumours. Overall, expression of pseudogenes, antisense and short RNAs is elevated in HPV16+ tumours, while the remaining long non-coding RNA types are more active in all HNSC tumours independent of HPV status. In addition, we identify putative regulatory targets of differentially expressed ncRNAs. Among these 'targets' we find several well-established oncogenes, tumour suppressors, cytokines, growth factors and cell differentiation genes, which indicates the potential involvement of ncRNA in the control of these key regulators as a direct consequence of HPV oncogenic activity. In conclusion, our findings establish the ncRNAs as crucial transcriptional components in HNSCs. Our results display the great potential for the study of ncRNAs and the role they have in human cancers.