Metabolic Flexibility in Response to Within-Season Temperature Variability in House Sparrows.
Ontology highlight
ABSTRACT: The climatic variability hypothesis (CVH) posits that more flexible phenotypes should provide a fitness advantage for organisms experiencing more variable climates. While typically applied across geographically separated populations, whether this principle applies across seasons or other conditions (e.g., open vs. sheltered habitats) which differ in climatic variability remains essentially unstudied. In north-temperate climates, climatic variability in winter usually exceeds that in summer, so extending the CVH to within-population seasonal variation predicts that winter phenotypes should be more flexible than summer phenotypes. We tested this prediction of the within-season extension of the CVH by acclimating summer and winter-collected house sparrows (Passer domesticus) to 24, 5, and -10°C and measuring basal metabolic rate (BMR) and summit metabolic rate (Msum = maximum cold-induced metabolic rate) before and after acclimation (Accl). To examine mechanistic bases for metabolic variation, we measured flight muscle and heart masses and citrate synthase and β-hydroxyacyl coA-dehydrogenase activities. BMR and Msum were higher for cold-acclimated than for warm-acclimated birds, and BMR was higher in winter than in summer birds. Contrary to our hypothesis of greater responses to cold Accl in winter birds, metabolic rates generally decreased over the Accl period for winter birds at all temperatures but increased at cold temperatures for summer birds. Flight muscle and heart masses were not significantly correlated with season or Accl treatment, except for supracoracoideus mass, which was lower at -10°C in winter, but flight muscle and heart masses were positively correlated with BMR and flight muscle mass was positively correlated with Msum. Catabolic enzyme activities were not clearly related to metabolic variation. Thus, our data suggest that predictions of the CVH may not be relevant when extended to seasonal temperature variability at the within-population scale. Indeed, these data suggest that metabolic rates are more prominently upregulated in summer than in winter in response to cold. Metabolic rates tended to decrease during Accl at all temperatures in winter, suggesting that initial metabolic rates at capture (higher in winter) influence metabolic Accl for captive birds.
SUBMITTER: Swanson DL
PROVIDER: S-EPMC7810579 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA