Project description:By analogy with the journal's title Pain Research and Management, this review describes TMD Research and Management. More specific are the (1) research aspects of "occlusion," still one of the most controversial topics in TMD, and (2) as much as possible evidence-based management aspects of "TMD" for the dental practitioner. Research. The disorders temporomandibular dysfunction and the synonymous craniomandibular dysfunction are still being discussed intensely in the literature. Traditionally, attention is mostly devoted to occlusion and its relationship with these disorders. The conclusions reached are often contradictory. Considering the definitions of temporomandibular and craniomandibular dysfunctions/disorders and "occlusion," a possible explanation for this controversy can be found in the subsequent methodological problems of the studies. Based on a Medline search of these terms over the past 40 years related to contemporary terms such as "Evidence Based Dentistry" and "Pyramid of Evidence," these methodological aspects are examined, resulting in recommendations for future research and TMD-occlusal therapy. Management. To assist the dental practitioner in his/her daily routine to meet the modern standards of best practice, 7 guidelines are formulated that are explained and accompanied with clinical examples for an evidence-based treatment of patients with this disorder in general dental practices.
Project description:The temporomandibular joint (TMJ) has many essential functions. None of its components are exempt from injury. Facial asymmetry, malocclusion, disturbances in growth, osteoarthritis, and ankylosis can manifest as complications from trauma to the TMJ. The goals of initial treatment include achievement of pretraumatic function, restoration of facial symmetry, and resolution of pain. These same objectives hold true for late repairs and reconstruction of the TMJ apparatus. Treatment is demanding, and with opposing approaches. The following article explores various treatment options for problems presenting as a result of a history of trauma to the TMJ.
Project description:Multiple physiological and psychological regulatory domains may contribute to the pathophysiology of pain in temporomandibular disorder (TMD) and other bodily pain conditions. The purpose of this study was to evaluate the relationship between multisystem dysregulation and the presence of TMD pain, as well as the presence of different numbers of comorbid pain conditions in TMD. Secondary data analysis was conducted in 131 non-TMD (without comorbid pain) controls, 14 TMD subjects without comorbid pain, 78 TMD subjects with 1 comorbid pain, and 67 TMD subjects with multiple comorbid pain conditions who participated in a TMD genetic study. Twenty markers from sensory, autonomic, inflammatory, and psychological domains were evaluated. The results revealed that 1) overall dysregulation in multiple system domains (OR [odds ratio] = 1.6, 95% confidence interval [CI] = 1.4-1.8), particularly in the sensory (OR = 1.9, 95% CI = 1.3-2.9) and the psychological (OR = 2.1, 95% CI = 2.1-2.7) domains, were associated with increased likelihood of being a painful TMD case; and 2) dysregulations in individual system domains were selectively associated with the increased odds of being a TMD case with different levels of comorbid persistent pain conditions. These outcomes indicate that heterogeneous multisystem dysregulations may exist in painful TMD subgroups, and multidimensional physiological and psychological assessments can provide important information regarding pathophysiology, diagnosis, and management of pain in TMD patients.The concurrent assessment of multiple physiological and psychological systems is critical to our understanding of the pathophysiological processes that contribute to painful TMD and associated comorbid conditions, which will ultimately guide and inform appropriate treatment strategies that address the multisystem dysregulation associated with complex and common persistent pain conditions.
Project description:This study aims to conduct a systematic analysis of literature published between 1 January 2018 and 1 September 2022, exploring factors influencing the progression or development of temporomandibular disorders (TMD), diagnosed using the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) or Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD). Three electronic databases were reviewed to identify papers that examined TMD factors using DC/TMD or RDC/TMD. Inclusion criteria encompassed original research published in English between 1 January 2018 and 1 October 2022, online, and complete DC/TMD or RDC/TMD studies on human participants aged 18 or older. Two authors independently assessed the risk of bias using The Joanna Briggs Institute (JBI) Analytical cross-sectional studies' Critical Appraisal Tool. Of 1478 articles, 11 were included. The studies revealed strong associations between TMD and factors such as female, poor sleep quality, depression, oral parafunction, anxiety, somatization, and anatomical features. However, variables such as education, living conditions, socioeconomic status, marital status, chronic pain, and stress did not exhibit statistically significant correlations. Based on the obtained data, it can be concluded that the causes of TMD are largely related to psychological factors, which supports the biopsychosocial theory of the disorder.
Project description:The aims of this study were (1) to compare the levels and interactions of several plasma proteins in patients with myogenous temporomandibular disorders (TMDM) compared to healthy and pain-free controls, (2) to compare the levels and interactions in two TMDM subgroups, myalgia (MYA) and myofascial pain (MFP), and (3) to explore associations between the proteins and clinical data. Thirty-nine patients with TMDM (MFP, n = 25, MYA, n = 14), diagnosed according to the diagnostic criteria for TMD (DC/TMD), aged 38 years, and sex-matched pain-free controls completed an extended DC/TMD Axis II questionnaire and the plasma concentration of 87 biomarkers were analyzed. Nine proteins separated TMDM from controls (p = 0.0174) and 12 proteins separated MYA from MFP (p = 0.019). Pain duration, characteristic pain intensity, pain catastrophizing, perceived stress, and insomnia severity were significantly associated with protein markers (p < 0.001 to p < 0.022). In conclusion, several plasma proteins were upregulated in TMDM and either upregulated or downregulated in MYA compared to MFP. Some proteins in TMDM were associated with pain variables, sleep disturbance, and emotional function. These results show that systemic differences in protein expression exist in patients with TMDM and that altered levels of specific plasma proteins are associated with different clinical variables.
Project description:The aim of this study was to identify correlations between sleep bruxism (SB) and temporomandibular disorders (TMD) as diagnosed by means of the research diagnostic criteria for temporomandibular disorders (RDC/TMD). Sleep bruxism was diagnosed on the basis of I) validated questionnaires, II) clinical symptoms, and III) electromyographic/electrocardiographic data. A total of 110 subjects were included in the study. Fifty-eight patients were identified as bruxers and 52 as nonbruxers. A psychosocial assessment was also performed. An RDC/TMD group-I diagnosis (myofascial pain) was made for 10 out of 58 bruxers, whereas none of the nonbruxers received a diagnosis of this type. No significant differences were found between bruxers and nonbruxers with regard to RDC/TMD group-II (disc displacement) and group-III (arthralgia, arthritis, arthrosis) diagnoses. Somatization was significantly more common among bruxers than nonbruxers. Multivariate logistic regression analysis revealed that somatization was the only factor significantly correlated with the diagnosis of myofascial pain. The results of this study indicate a correlation between myofascial pain, as diagnosed using the RDC/TMD, and somatization. It seems that somatization is a stronger predictor of an RDC/TMD diagnosis of myofascial pain than sleep bruxism is.
Project description:BackgroundPeriodontitis (PD) may affect temporomandibular joint disorders (TMD) and TMD may influence PD in previous observational studies. Nevertheless, these studies were prone to confounders and reverse causation, leading to incorrect conclusions about causality and direction of association. This research investigates the associations between PD and TMD employing bidirectional two-sample Mendelian randomization (MR) analysis.MethodsSingle-nucleotide polymorphisms (SNPs) related to PD (p < 5 × 10-6) were selected from a genome-wide association study (GWAS) from the Gene-Lifestyle Interaction in the Dental Endpoints (GLIDE) consortium, and related these to SNPs from FinnGen and UK Biobank (UKB) consortia, and vice versa. We implemented the standard inverse variance weighted (IVW), weighted median (WM), MR-Egger regression, and MR-PRESSO methods to estimate the potential causality between PD and TMD. Sensitive tests were conducted using robust MR methods. Results from FinnGen and UKB were combined using the fixed model.ResultsPD did not appear to causally affect TMD. Additionally, the reverse MR analysis did not reveal a significant causal effect of TMD on PD. The results of other MR methods were similar to those of the IVW method. Sensitivity analyses addressed no potential pleiotropy in MR estimations. Results from the meta-analysis were consistent with the above-mentioned consequences.ConclusionThis research does not support a causal relationship between PD and TMD. PD does not appear to worsen TMD directly, and vice versa.
Project description:BackgroundMounting evidence suggests that central nervous system amplification, similar to that seen in fibromyalgia (FM), contributes to the pain experience in a subset of patients with temporomandibular disorders (TMD).MethodsIn this prospective observational study, patients with TMD completed the 2011 FM survey questionnaire, a surrogate measure of "centralized" pain. The influence of centralized pain on TMD pain, dysfunction, and disability was assessed dichotomously by determining the incidence of FM-positive cases in the sample and by using FM survey scores as a continuous measure of "fibromyalgia-ness" ("FM-ness").ResultsThe patients meeting criteria for FM diagnosis (17 of 89) had significantly more disease burden on numerous measures. FM-ness was positively associated with pain at rest, negative mood, tenderness to palpation, perceived jaw functional limitation, and pain-related disability, and it was negatively associated with comfortable pain-free jaw opening. The impact of FM-ness on perceived jaw functional limitation and disability was mediated by levels of spontaneous, ongoing pain in the orofacial region. Importantly, this pattern of findings was still present even in those not meeting the criteria for FM diagnosis.ConclusionTogether, these results imply that higher FM-ness increases TMD patient burden by amplifying spontaneous pain and further hampering painless jaw function, even in patients who do not meet criteria for FM diagnosis. These results are highly relevant for the clinical management of TMD, as they imply that targeting the central nervous system in the treatment of patients with TMD with evidence of pain centralization may help ameliorate both pain and jaw dysfunction.
Project description:Although temporomandibular disorders (TMD) have been associated with abnormal gray matter volumes in cortical areas and in the striatum, the corticostriatal functional connectivity (FC) of patients with TMD has not been studied. Here, we studied 30 patients with TMD and 20 healthy controls that underwent clinical evaluations, including Helkimo indices, pain assessments, and resting-state functional magnetic resonance imaging scans. The FCs of the striatal regions with the other brain areas were examined with a seed-based approach. As seeds, we used the dorsal caudate, ventral caudate/nucleus accumbens, dorsal caudal putamen, and ventral rostral putamen regions. Voxel-wise comparisons with controls revealed that the patients with TMD exhibited reduced FCs in the ventral corticostriatal circuitry, between the ventral striatum and ventral frontal cortices, including the anterior cingulate cortex and anterior insula; in the dorsal corticostriatal circuitry, between the dorsal striatum and the dorsal cortices, including the precentral gyrus and supramarginal gyrus; and also within the striatum. Additionally, we explored correlations between the reduced corticostriatal FCs and clinical measurements. These results directly supported the hypothesis that TMD is associated with reduced FCs in brain corticostriatal networks and that these reduced FCs may underlie the deficits in motor control, pain processing, and cognition in TMD. Our findings may contribute to the understanding of the etiologies and pathologies of TMD.