Unknown

Dataset Information

0

Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley.


ABSTRACT: Drought impairs growth and spike development, and is therefore a major cause of yield losses in the temperate cereals barley and wheat. Here, we show that the photoperiod response gene PHOTOPERIOD-H1 (Ppd-H1) interacts with drought stress signals to modulate spike development. We tested the effects of a continuous mild and a transient severe drought stress on developmental timing and spike development in spring barley cultivars with a natural mutation in ppd-H1 and derived introgression lines carrying the wild-type Ppd-H1 allele from wild barley. Mild drought reduced the spikelet number and delayed floral development in spring cultivars but not in the introgression lines with a wild-type Ppd-H1 allele. Similarly, drought-triggered reductions in plant height, and tiller and spike number were more pronounced in the parental lines compared with the introgression lines. Transient severe stress halted growth and floral development; upon rewatering, introgression lines, but not the spring cultivars, accelerated development so that control and stressed plants flowered almost simultaneously. These genetic differences in development were correlated with a differential down-regulation of the flowering promotors FLOWERING LOCUS T1 and the BARLEY MADS-box genes BM3 and BM8. Our findings therefore demonstrate that Ppd-H1 affects developmental plasticity in response to drought in barley.

SUBMITTER: Gol L 

PROVIDER: S-EPMC7816852 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley.

Gol Leonard L   Haraldsson Einar B EB   von Korff Maria M  

Journal of experimental botany 20210101 1


Drought impairs growth and spike development, and is therefore a major cause of yield losses in the temperate cereals barley and wheat. Here, we show that the photoperiod response gene PHOTOPERIOD-H1 (Ppd-H1) interacts with drought stress signals to modulate spike development. We tested the effects of a continuous mild and a transient severe drought stress on developmental timing and spike development in spring barley cultivars with a natural mutation in ppd-H1 and derived introgression lines ca  ...[more]

Similar Datasets

| S-EPMC3478166 | biostudies-literature
2022-05-24 | GSE181836 | GEO
| S-EPMC6906298 | biostudies-literature
2022-05-24 | GSE181833 | GEO
2022-05-24 | GSE181831 | GEO
2009-09-30 | GSE17669 | GEO
| S-EPMC5634948 | biostudies-literature
| S-EPMC10893938 | biostudies-literature
| PRJNA753534 | ENA
| S-EPMC4603928 | biostudies-literature