Unknown

Dataset Information

0

Transcriptomic responses of Microcystis aeruginosa under electromagnetic radiation exposure.


ABSTRACT: Electromagnetic radiation is an important environmental factor. It has a potential threat to public health and ecological environment. However, the mechanism by which electromagnetic radiation exerts these biological effects remains unclear. In this study, the effect of Microcystis aeruginosa under electromagnetic radiation (1.8 GHz, 40 V/m) was studied by using transcriptomics. A total of 306 differentially expressed genes, including 121 upregulated and 185 downregulated genes, were obtained in this study. The differentially expressed genes were significantly enriched in the ribosome, oxidative phosphorylation and carbon fixation pathways, indicating that electromagnetic radiation may inhibit protein synthesis and affect cyanobacterial energy metabolism and photosynthesis. The total ATP synthase activity and ATP content significantly increased, whereas H+K+-ATPase activity showed no significant changes. Our results suggest that the energy metabolism pathway may respond positively to electromagnetic radiation. In the future, systematic studies on the effects of electromagnetic radiation based on different intensities, frequencies, and exposure times are warranted; to deeply understand and reveal the target and mechanism of action of electromagnetic exposure on organisms.

SUBMITTER: Tang C 

PROVIDER: S-EPMC7822859 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transcriptomic responses of Microcystis aeruginosa under electromagnetic radiation exposure.

Tang Chao C   Zhang Ziyan Z   Tian Shen S   Cai Peng P  

Scientific reports 20210122 1


Electromagnetic radiation is an important environmental factor. It has a potential threat to public health and ecological environment. However, the mechanism by which electromagnetic radiation exerts these biological effects remains unclear. In this study, the effect of Microcystis aeruginosa under electromagnetic radiation (1.8 GHz, 40 V/m) was studied by using transcriptomics. A total of 306 differentially expressed genes, including 121 upregulated and 185 downregulated genes, were obtained in  ...[more]

Similar Datasets

| S-EPMC5764990 | biostudies-literature
| S-EPMC7356878 | biostudies-literature
2018-12-21 | GSE108380 | GEO
| S-EPMC6910837 | biostudies-literature
2011-03-31 | PRD000277 | Pride
| S-EPMC3023806 | biostudies-literature