Project description:Nebulised unfractionated heparin (UFH) has a strong scientific and biological rationale and warrants urgent investigation of its therapeutic potential, for COVID-19-induced acute respiratory distress syndrome (ARDS). COVID-19 ARDS displays the typical features of diffuse alveolar damage with extensive pulmonary coagulation activation resulting in fibrin deposition in the microvasculature and formation of hyaline membranes in the air sacs. Patients infected with SARS-CoV-2 who manifest severe disease have high levels of inflammatory cytokines in plasma and bronchoalveolar lavage fluid and significant coagulopathy. There is a strong association between the extent of the coagulopathy and poor clinical outcomes.The anti-coagulant actions of nebulised UFH limit fibrin deposition and microvascular thrombosis. Trials in patients with acute lung injury and related conditions found inhaled UFH reduced pulmonary dead space, coagulation activation, microvascular thrombosis and clinical deterioration, resulting in increased time free of ventilatory support. In addition, UFH has anti-inflammatory, mucolytic and anti-viral properties and, specifically, has been shown to inactivate the SARS-CoV-2 virus and prevent its entry into mammalian cells, thereby inhibiting pulmonary infection by SARS-CoV-2. Furthermore, clinical studies have shown that inhaled UFH safely improves outcomes in other inflammatory respiratory diseases and also acts as an effective mucolytic in sputum-producing respiratory patients. UFH is widely available and inexpensive, which may make this treatment also accessible for low- and middle-income countries.These potentially important therapeutic properties of nebulised UFH underline the need for expedited large-scale clinical trials to test its potential to reduce mortality in COVID-19 patients.
Project description:Busana et al. (doi.org/10.1152/japplphysiol.00871.2020) published 5 patients with COVID-19 in whom the fraction of non-aerated lung tissue had been quantified by computed tomography. They assumed that shunt flow fraction was proportional to the non-aerated lung fraction, and, by randomly generating 106 different bimodal distributions for the ventilation-perfusion ([Formula: see text]) ratios in the lung, specified as sets of paired values {[Formula: see text]}, sought to identify as solutions those that generated the observed arterial partial pressures of CO2 and O2 (PaCO2 and PaO2). Our study sought to develop a direct method of calculation to replace the approach of randomly generating different distributions, and so provide more accurate solutions that were within the measurement error of the blood-gas data. For the one patient in whom Busana et al. did not find solutions, we demonstrated that the assumed shunt flow fraction led to a non-shunt blood flow that was too low to support the required gas exchange. For the other four patients, we found precise solutions (prediction error < 1x10-3 mmHg for both PaCO2 and PaO2), with distributions qualitatively similar to those of Busana et al. These distributions were extremely wide and unlikely to be physically realisable, because they predict the maintenance of very large concentration gradients in regions of the lung where convection is slow. We consider that these wide distributions arise because the assumed value for shunt flow is too low in these patients, and we discuss possible reasons why the assumption relating to shunt flow fraction may break down in COVID-19 pneumonia.
Project description:BackgroundCoronavirus disease 2019 (COVID-19) may severely impair pulmonary function and cause hypoxia. However, the association of COVID-19 pneumonia on CT with impaired ventilation remains unexplained. This pilot study aims to demonstrate the relationship between the radiological findings on COVID-19 CT images and ventilation abnormalities simulated in a computational model linked to the patients' symptoms.MethodsTwenty-five patients with COVID-19 and four test-negative healthy controls who underwent a baseline non-enhanced CT scan: 7 dyspneic patients, 9 symptomatic patients without dyspnea, and 9 asymptomatic patients were included. A 2D U-Net-based CT segmentation software was used to quantify radiological futures of COVID-19 pneumonia. The CT image-based full-scale airway network (FAN) flow model was employed to assess regional lung ventilation. Functional and radiological features were compared across groups and correlated with the clinical symptoms. Heterogeneity in ventilation distribution and ventilation defects associated with the pneumonia and the patients' symptoms were assessed.ResultsMedian percentage ventilation defects were 0.2% for healthy controls, 0.7% for asymptomatic patients, 1.2% for symptomatic patients without dyspnea, and 11.3% for dyspneic patients. The median of percentage pneumonia was 13.2% for dyspneic patients and 0% for the other groups. Ventilation defects preferentially affected the posterior lung and worsened with increasing pneumonia linearly (y = 0.91x + 0.99, R2 = 0.73) except for one of the nine dyspneic patients who had disproportionally large ventilation defects (7.8% of the entire lung) despite mild pneumonia (1.2%). The symptomatic and dyspneic patients showed significantly right-skewed ventilation distributions (symptomatic without dyspnea: 0.86 ± 0.61, dyspnea 0.91 ± 0.79) compared to the patients without symptom (0.45 ± 0.35). The ventilation defect analysis with the FAN model provided a comparable diagnostic accuracy to the percentage pneumonia in identifying dyspneic patients (area under the receiver operating characteristic curve, 0.94 versus 0.96).ConclusionsCOVID-19 pneumonia segmentations from CT scans are accompanied by impaired pulmonary ventilation preferentially in dyspneic patients. Ventilation analysis with CT image-based computational modelling shows it is able to assess functional impairment in COVID-19 and potentially identify one of the aetiologies of hypoxia in patients with COVID-19 pneumonia.
Project description:There is significant interest in the potential for nebulised unfractionated heparin (UFH), as a novel therapy for patients with COVID-19 induced acute hypoxaemic respiratory failure requiring invasive ventilation. The scientific and biological rationale for nebulised heparin stems from the evidence for extensive activation of coagulation resulting in pulmonary microvascular thrombosis in COVID-19 pneumonia. Nebulised delivery of heparin to the lung may limit alveolar fibrin deposition and thereby limit progression of lung injury. Importantly, laboratory studies show that heparin can directly inactivate the SARS-CoV-2 virus, thereby prevent its entry into and infection of mammalian cells. UFH has additional anti-inflammatory and mucolytic properties that may be useful in this context. METHODS AND INTERVENTION: The Can nebulised HepArin Reduce morTality and time to Extubation in Patients with COVID-19 Requiring invasive ventilation Meta-Trial (CHARTER-MT) is a collaborative prospective individual patient data analysis of on-going randomised controlled clinical trials across several countries in five continents, examining the effects of inhaled heparin in patients with COVID-19 requiring invasive ventilation on various endpoints. Each constituent study will randomise patients with COVID-19 induced respiratory failure requiring invasive ventilation. Patients are randomised to receive nebulised heparin or standard care (open label studies) or placebo (blinded placebo-controlled studies) while under invasive ventilation. Each participating study collect a pre-defined minimum dataset. The primary outcome for the meta-trial is the number of ventilator-free days up to day 28 day, defined as days alive and free from invasive ventilation.
Project description:Prophylactic low molecular weight heparin (pLMWH) is currently recommended in COVID-19 to reduce the risk of coagulopathy. The aim of this study was to evaluate whether the antinflammatory effects of pLMWH could translate in lower rate of clinical progression in patients with COVID-19 pneumonia. Patients admitted to a COVID-hospital in Rome with SARS-CoV-2 infection and mild/moderate pneumonia were retrospectively evaluated. The primary endpoint was the time from hospital admission to orotracheal intubation/death (OTI/death). A total of 449 patients were included: 39% female, median age 63 (IQR, 50-77) years. The estimated probability of OTI/death for patients receiving pLMWH was: 9.5% (95% CI 3.2-26.4) by day 20 in those not receiving pLMWH vs. 10.4% (6.7-15.9) in those exposed to pLMWH; p-value = 0.144. This risk associated with the use of pLMWH appeared to vary by PaO2/FiO2 ratio: aHR 1.40 (95% CI 0.51-3.79) for patients with an admission PaO2/FiO2 ≤ 300 mmHg and 0.27 (0.03-2.18) for those with PaO2/FiO2 > 300 mmHg; p-value at interaction test 0.16. pLMWH does not seem to reduce the risk of OTI/death mild/moderate COVID-19 pneumonia, especially when respiratory function had already significantly deteriorated. Data from clinical trials comparing the effect of prophylactic vs. therapeutic dosage of LMWH at various stages of COVID-19 disease are needed.
Project description:BackgroundVentilation management may differ between COVID-19 ARDS (COVID-ARDS) patients and patients with pre-COVID ARDS (CLASSIC-ARDS); it is uncertain whether associations of ventilation management with outcomes for CLASSIC-ARDS also exist in COVID-ARDS.MethodsIndividual patient data analysis of COVID-ARDS and CLASSIC-ARDS patients in six observational studies of ventilation, four in the COVID-19 pandemic and two pre-pandemic. Descriptive statistics were used to compare epidemiology and ventilation characteristics. The primary endpoint were key ventilation parameters; other outcomes included mortality and ventilator-free days and alive (VFD-60) at day 60.ResultsThis analysis included 6702 COVID-ARDS patients and 1415 CLASSIC-ARDS patients. COVID-ARDS patients received lower median VT (6.6 [6.0 to 7.4] vs 7.3 [6.4 to 8.5] ml/kg PBW; p < 0.001) and higher median PEEP (12.0 [10.0 to 14.0] vs 8.0 [6.0 to 10.0] cm H2O; p < 0.001), at lower median ΔP (13.0 [10.0 to 15.0] vs 16.0 [IQR 12.0 to 20.0] cm H2O; p < 0.001) and higher median Crs (33.5 [26.6 to 42.1] vs 28.1 [21.6 to 38.4] mL/cm H2O; p < 0.001). Following multivariable adjustment, higher ΔP had an independent association with higher 60-day mortality and less VFD-60 in both groups. Higher PEEP had an association with less VFD-60, but only in COVID-ARDS patients.ConclusionsOur findings show important differences in key ventilation parameters and associations thereof with outcomes between COVID-ARDS and CLASSIC-ARDS.Trial registrationClinicaltrials.gov (identifier NCT05650957), December 14, 2022.
Project description:PurposeCOVID-19-related acute respiratory distress syndrome (ARDS) is characterized by the presence of signs of microvascular involvement at the CT scan, such as the vascular tree in bud (TIB) and the vascular enlargement pattern (VEP). Recent evidence suggests that TIB could be associated with an increased duration of invasive mechanical ventilation (IMV) and intensive care unit (ICU) stay. The primary objective of this study was to evaluate whether microvascular involvement signs could have a prognostic significance concerning liberation from IMV.Material and methodsAll the COVID-19 patients requiring IMV admitted to 16 Italian ICUs and having a lung CT scan recorded within 3 days from intubation were enrolled in this secondary analysis. Radiologic, clinical and biochemical data were collected.ResultsA total of 139 patients affected by COVID-19 related ARDS were enrolled. After grouping based on TIB or VEP detection, we found no differences in terms of duration of IMV and mortality. Extension of VEP and TIB was significantly correlated with ground-glass opacities (GGOs) and crazy paving pattern extension. A parenchymal extent over 50% of GGO and crazy paving pattern was more frequently observed among non-survivors, while a VEP and TIB extent involving 3 or more lobes was significantly more frequent in non-responders to prone positioning.ConclusionsThe presence of early CT scan signs of microvascular involvement in COVID-19 patients does not appear to be associated with differences in duration of IMV and mortality. However, patients with a high extension of VEP and TIB may have a reduced oxygenation response to prone positioning.Trial registrationNCT04411459.
Project description:The coronavirus disease 2019 (COVID-19) is an unprecedented pandemic that has severely impacted global public health and the economy. Hydroxychloroquine administered orally to COVID-19 patients was ineffective, but its antiviral and anti-inflammatory actions were observed in vitro. The lack of efficacy in vivo could be due to the inefficiency of the oral route in attaining high drug concentration in the lungs. Delivering hydroxychloroquine by inhalation may be a promising alternative for direct targeting with minimal systemic exposure. This paper reports on the characterisation of isotonic, pH-neutral hydroxychloroquine sulphate (HCQS) solutions for nebulisation for COVID-19. They can be prepared, sterilised, and nebulised for testing as an investigational new drug for treating this infection. The 20, 50, and 100 mg/mL HCQS solutions were stable for at least 15 days without refrigeration when stored in darkness. They were atomised from Aerogen Solo Ultra vibrating mesh nebulisers (1 mL of each of the three concentrations and, in addition, 1.5 mL of 100 mg/mL) to form droplets having a median volumetric diameter of 4.3-5.2 µm, with about 50-60% of the aerosol by volume < 5 µm. The aerosol droplet size decreased (from 4.95 to 4.34 µm) with increasing drug concentration (from 20 to 100 mg/mL). As the drug concentration and liquid volume increased, the nebulisation duration increased from 3 to 11 min. The emitted doses ranged from 9.1 to 75.9 mg, depending on the concentration and volume nebulised. The HCQS solutions appear suitable for preclinical and clinical studies for potential COVID-19 treatment.
Project description:PurposeLimited mechanical ventilators (MV) during the Coronavirus disease (COVID-19) pandemic have led to the use of non-invasive ventilation (NIV) in hypoxemic patients, which has not been studied well. We aimed to assess the association of NIV versus MV with mortality and morbidity during respiratory intervention among hypoxemic patients admitted with COVID-19.MethodsWe performed a retrospective multi-center cohort study across 5 hospitals during March-April 2020. Outcomes included mortality, severe COVID-19-related symptoms, time to discharge, and final oxygen saturation (SpO2) at the conclusion of the respiratory intervention. Multivariable regression of outcomes was conducted in all hypoxemic participants, 4 subgroups, and propensity-matched analysis.ResultsOf 2381 participants with laboratory-confirmed SARS-CoV-2, 688 were included in the study who were hypoxemic upon initiation of respiratory intervention. During the study period, 299 participants died (43%), 163 were admitted to the ICU (24%), and 121 experienced severe COVID-19-related symptoms (18%). Participants on MV had increased mortality than those on NIV (128/154 [83%] versus 171/534 [32%], OR = 30, 95% CI 16-60) with a mean survival of 6 versus 15 days, respectively. The MV group experienced more severe COVID-19-related symptoms [55/154 (36%) versus 66/534 (12%), OR = 4.3, 95% CI 2.7-6.8], longer time to discharge (mean 17 versus 7.1 days), and lower final SpO2 (92 versus 94%). Across all subgroups and propensity-matched analysis, MV was associated with a greater OR of death than NIV.ConclusionsNIV was associated with lower respiratory intervention mortality and morbidity than MV. However, findings may be liable to unmeasured confounding and further study from randomized controlled trials is needed to definitively determine the role of NIV in hypoxemic patients with COVID-19.
Project description:BackgroundWe present the care of 17 consecutive pregnant patients who required mechanical ventilation for Coronavirus disease 2019 (COVID-19) pneumonia at a quaternary referral center in the United States. We retrospectively describe the management of these patients, maternal and fetal outcomes, as well as the feasibility of prone positioning and delivery.MethodsBetween March 2020 and June 2021, all pregnant and postpartum patients who were mechanically ventilated for COVID-19 pneumonia were identified. Details of their management including prone positioning, maternal and neonatal outcomes, and complications were noted.ResultsSeventeen pregnant patients required mechanical ventilation for COVID-19. Thirteen patients received prone positioning, with a total of 49 prone sessions. One patient required extracorporeal membrane oxygenation. All patients in this series survived until at least discharge. Nine patients delivered while mechanically ventilated, and all neonates survived, subsequently testing negative for SARS-CoV-2. There was one spontaneous abortion. Four emergent cesarean deliveries were prompted by refractory maternal hypoxemia or non-reassuring fetal heart rate after maternal intubation.ConclusionsOverall, maternal and neonatal survival were favorable even in the setting of severe COVID-19 pneumonia requiring mechanical ventilation. Prone positioning was well tolerated although the impact of prone positioning or fetal delivery on maternal oxygenation and ventilation are unclear.