Ontology highlight
ABSTRACT: Objectives
In idiopathic pulmonary fibrosis (IPF), alterations in the pulmonary surfactant system result in an increased alveolar surface tension and favor repetitive alveolar collapse. This study aimed to assess the usefulness of electrical impedance tomography (EIT) in characterization of regional ventilation in IPF.Materials and methods
We investigated 17 patients with IPF and 15 healthy controls from the University of Giessen and Marburg Lung Center (UGMLC), Germany, for differences in the following EIT parameters: distribution of ventilation (TID), global inhomogeneity index (GI), regional impedance differences through the delta of end-expiratory lung impedance (dEELI), differences in surface of ventilated area (SURF), as well as center of ventilation (CG) and intratidal gas distribution (ITV). These parameters were assessed under spontaneous breathing and following a predefined escalation protocol of the positive end-expiratory pressure (PEEP), applied through a face mask by an intensive care respirator (EVITA, Draeger, Germany).Results
Individual slopes of dEELI over the PEEP increment protocol were found to be highly significantly increased in both groups (p < 0.001) but were not found to be significantly different between groups. Similarly, dTID slopes were increasing in response to PEEP, but this did not reach statistical significance within or between groups. Individual breathing patterns were very heterogeneous. There were no relevant differences of SURF, GI or CGVD over the PEEP escalation range. A correlation of dEELI to FVC, BMI, age, or weight did not forward significant results.Conclusions
In this study, we did see a significant increase in dEELI and a non-significant increase in dTID in IPF patients as well as in healthy controls in response to an increase of PEEP under spontaneous breathing. We propose the combined measurements of EIT and lung function to assess regional lung ventilation in spontaneously breathing subjects.
SUBMITTER: Krauss E
PROVIDER: S-EPMC7827956 | biostudies-literature | 2021 Jan
REPOSITORIES: biostudies-literature
Journal of clinical medicine 20210107 2
<h4>Objectives</h4>In idiopathic pulmonary fibrosis (IPF), alterations in the pulmonary surfactant system result in an increased alveolar surface tension and favor repetitive alveolar collapse. This study aimed to assess the usefulness of electrical impedance tomography (EIT) in characterization of regional ventilation in IPF.<h4>Materials and methods</h4>We investigated 17 patients with IPF and 15 healthy controls from the University of Giessen and Marburg Lung Center (UGMLC), Germany, for diff ...[more]