Project description:OBJECTIVES:Following the public-health emergency of international concern (PHEIC) declared by the World Health Organization (WHO) on 30 January 2020 and the recent outbreak caused by 2019 novel coronavirus (2019-nCoV) [officially renamed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] in China and 29 other countries, we aimed to summarise the clinical aspects of the novelBetacoronavirus disease (COVID-19) and its possible clinical presentations together with suggested therapeutic algorithms for patients who may require antimicrobial treatment. METHODS:The currently available literature was reviewed for microbiologically confirmed infections by 2019-nCoV or COVID-19 at the time of writing (13 February 2020). A literature search was performed using the PubMed database and Cochrane Library. Search terms included 'novel coronavirus' or '2019-nCoV' or 'COVID-19'. RESULTS:Published cases occurred mostly in males (age range, 8-92 years). Cardiovascular, digestive and endocrine system diseases were commonly reported, except previous chronic pulmonary diseases [e.g. chronic obstructive pulmonary disease (COPD), asthma, bronchiectasis] that were surprisingly underreported. Fever was present in all of the case series available, flanked by cough, dyspnoea, myalgia and fatigue. Multiple bilateral lobular and subsegmental areas of consolidation or bilateral ground-glass opacities were the main reported radiological features of 2019-nCoV infection, at least in the early phases of the disease. CONCLUSION:The new 2019-nCoV epidemic is mainly associated with respiratory disease and few extrapulmonary signs. However, there is a low rate of associated pre-existing respiratory co-morbidities.
Project description:BackgroundThe coronavirus disease 2019 (COVID-19) epidemic affected blood collection in Guangzhou, China.Study design and methodsThis paper includes three studies. The observational study reported the trends of blood collection during the epidemic in Guangzhou, China. The cross-sectional survey investigated factors influencing blood donation during the COVID-19 epidemic, and a self-administered questionnaire was given to 1584 street whole blood donors (SWBDs) who donated during the epidemic. The randomized controlled trial involved 19 491 SWBDs who donated in 2019 but did not donate during the epidemic. Trial participants were randomly assigned to two intervention groups: Group 1 completed Questionnaire 1, which contained precautionary measures in response to COVID-19 and other messages about blood donation during the epidemic; Group 2 completed Questionnaire 2, which did not include this information. A control group did not receive any questionnaire.ResultsAs measures were implemented, the number of blood donors increased accordingly. Both first-time and repeat SWBDs perceived the same level of blood need and donated blood because it would save lives. SWBDs who completed Questionnaire 1 expressed a greater intention to donate during the epidemic. Enabling blood donors to perceive a higher level of blood need and a lower level of COVID-19 infection risk related to blood donation mobilized experienced SWBDs to donate within 3 weeks. Intention-to-treat analyses and average-treatment-effect-on-the-treated estimations confirmed that Questionnaire 1 could motivate SWBDs to actually donate blood.ConclusionVarious measures could ease blood shortage during the COVID-19 epidemic. Administration of Questionnaire 1 could increase blood donations during the epidemic.
Project description:BackgroundA local coronavirus disease 2019 (COVID-19) case confirmed on June 11, 2020 triggered an outbreak in Beijing, China after 56 consecutive days without a newly confirmed case. Non-pharmaceutical interventions (NPIs) were used to contain the source in Xinfadi (XFD) market. To rapidly control the outbreak, both traditional and newly introduced NPIs including large-scale management of high-risk populations and expanded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-based screening in the general population were conducted in Beijing. We aimed to assess the effectiveness of the response to the COVID-19 outbreak in Beijing's XFD market and inform future response efforts of resurgence across regions.MethodsA modified susceptible-exposed-infectious-recovered (SEIR) model was developed and applied to evaluate a range of different scenarios from the public health perspective. Two outcomes were measured: magnitude of transmission (i.e., number of cases in the outbreak) and endpoint of transmission (i.e., date of containment). The outcomes of scenario evaluations were presented relative to the reality case (i.e., 368 cases in 34 days) with 95% Confidence Interval (CI).ResultsOur results indicated that a 3 to 14 day delay in the identification of XFD as the infection source and initiation of NPIs would have caused a 3 to 28-fold increase in total case number (31-77 day delay in containment). A failure to implement the quarantine scheme employed in the XFD outbreak for defined key population would have caused a fivefold greater number of cases (73 day delay in containment). Similarly, failure to implement the quarantine plan executed in the XFD outbreak for close contacts would have caused twofold greater transmission (44 day delay in containment). Finally, failure to implement expanded nucleic acid screening in the general population would have yielded 1.6-fold greater transmission and a 32 day delay to containment.ConclusionsThis study informs new evidence that in form the selection of NPI to use as countermeasures in response to a COVID-19 outbreak and optimal timing of their implementation. The evidence provided by this study should inform responses to future outbreaks of COVID-19 and future infectious disease outbreak preparedness efforts in China and elsewhere.
Project description:The temporal growth in the number of deaths in the COVID-19 epidemic is subexponential. Here we show that a piecewise quadratic law provides an excellent fit during the thirty days after the first three fatalities on January 20 and later since the end of March 2020. There is also a brief intermediate period of exponential growth. During the second quadratic growth phase, the characteristic time of the growth is about eight times shorter than in the beginning, which can be understood as the occurrence of separate hotspots. Quadratic behavior can be motivated by peripheral growth when further spreading occurs only on the outskirts of an infected region. We also study numerical solutions of a simple epidemic model, where the spatial extend of the system is taken into account. To model the delayed onset outside China together with the early one in China within a single model with minimal assumptions, we adopt an initial condition of several hotspots, of which one reaches saturation much earlier than the others. At each site, quadratic growth commences when the local number of infections has reached a certain saturation level. The total number of deaths does then indeed follow a piecewise quadratic behavior.
Project description:BackgroundThe coronavirus disease 2019 (COVID-19) is rapidly spreading in China and more than 30 countries over last two months. COVID-19 has multiple characteristics distinct from other infectious diseases, including high infectivity during incubation, time delay between real dynamics and daily observed number of confirmed cases, and the intervention effects of implemented quarantine and control measures.MethodsWe develop a Susceptible, Un-quanrantined infected, Quarantined infected, Confirmed infected (SUQC) model to characterize the dynamics of COVID-19 and explicitly parameterize the intervention effects of control measures, which is more suitable for analysis than other existing epidemic models.ResultsThe SUQC model is applied to the daily released data of the confirmed infections to analyze the outbreak of COVID-19 in Wuhan, Hubei (excluding Wuhan), China (excluding Hubei) and four first-tier cities of China. We found that, before January 30, 2020, all these regions except Beijing had a reproductive number R > 1, and after January 30, all regions had a reproductive number R < 1, indicating that the quarantine and control measures are effective in preventing the spread of COVID-19. The confirmation rate of Wuhan estimated by our model is 0.0643, substantially lower than that of Hubei excluding Wuhan (0.1914), and that of China excluding Hubei (0.2189), but it jumps to 0.3229 after February 12 when clinical evidence was adopted in new diagnosis guidelines. The number of unquarantined infected cases in Wuhan on February 12, 2020 is estimated to be 3,509 and declines to 334 on February 21, 2020. After fitting the model with data as of February 21, 2020, we predict that the end time of COVID-19 in Wuhan and Hubei is around late March, around mid March for China excluding Hubei, and before early March 2020 for the four tier-one cities. A total of 80,511 individuals are estimated to be infected in China, among which 49,510 are from Wuhan, 17,679 from Hubei (excluding Wuhan), and the rest 13,322 from other regions of China (excluding Hubei). Note that the estimates are from a deterministic ODE model and should be interpreted with some uncertainty.ConclusionsWe suggest that rigorous quarantine and control measures should be kept before early March in Beijing, Shanghai, Guangzhou and Shenzhen, and before late March in Hubei. The model can also be useful to predict the trend of epidemic and provide quantitative guide for other countries at high risk of outbreak, such as South Korea, Japan, Italy and Iran.Supplementary materialsThe supplementary materials can be found online with this article at 10.1007/s40484-020-0199-0.
Project description:Recently, a new coronavirus disease (COVID-19) has emerged as a respiratory infection with significant concern for global public health hazards. With an initial suspicion of the animal to the human transmission for earlier cases, now the paradigm has shifted towards human to human transmission via droplets, contacts and/or through fomites. with each passing day, more and more confirmed cases are being reported worldwide which has alarmed the global authorities including World Health Organization (WHO), Centers for Disease Control and Prevention (CDC) and the National Health Commission of the People's Republic of China to take immediate action in order to reduce the transmission and subsequent mortalities associated with COVID-19 to as minimum as possible. Unfortunately, like the previous Coronavirus outbreaks, there is no definite antiviral therapy for the treatment of confirmed cases and hence preventing ourselves from contracting 2019-nCoV is the best way to prevent it from becoming pandemic. Herein, we aim to discuss the latest updates on the origin, genomic characteristics, diagnosis, treatment options and current efforts being made by international health organizations with regards to the 2019-nCoV outbreak.
Project description:Coronavirus disease-2019 is a serious health threat around the globe. Across the world, approximately 142 million people were infected, and three million deaths happened. The fast propagation is also associated with constant anxiety, mental stress, and discomfort in public and health-care professionals. Lack of approved drugs regimen to combat the pandemic challenge concretely is a challenging project for all who are committed to developing remedial assistance. However, the successful development of three vaccines gives a solid roadmap to combat this disease. In this review, we highlighted the current development and challenges of this pandemic.
Project description:In December 2019, cases of unidentified pneumonia with a history of exposure in the Huanan Seafood Market were reported in Wuhan, Hubei Province. A novel coronavirus, SARS-CoV-2, was identified to be accountable for this disease. Human-to-human transmission is confirmed, and this disease (named COVID-19 by World Health Organization (WHO)) spread rapidly around the country and the world. As of 18 February 2020, the number of confirmed cases had reached 75,199 with 2009 fatalities. The COVID-19 resulted in a much lower case-fatality rate (about 2.67%) among the confirmed cases, compared with Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). Among the symptom composition of the 45 fatality cases collected from the released official reports, the top four are fever, cough, short of breath, and chest tightness/pain. The major comorbidities of the fatality cases include hypertension, diabetes, coronary heart disease, cerebral infarction, and chronic bronchitis. The source of the virus and the pathogenesis of this disease are still unconfirmed. No specific therapeutic drug has been found. The Chinese Government has initiated a level-1 public health response to prevent the spread of the disease. Meanwhile, it is also crucial to speed up the development of vaccines and drugs for treatment, which will enable us to defeat COVID-19 as soon as possible.
Project description:Italy was the first country in Europe which imposed control measures of travel restrictions, quarantine and contact precautions to tackle the epidemic spread of the novel coronavirus (SARS-CoV-2) in all its regions. While such efforts are still ongoing, uncertainties regarding SARS-CoV-2 transmissibility and ascertainment of cases make it difficult to evaluate the effectiveness of restrictions. Here, we employed a Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model to assess SARS-CoV-2 transmission dynamics, working on the number of reported patients in intensive care unit (ICU) and deaths in Sicily (Italy), from 24 February to 13 April. Overall, we obtained a good fit between estimated and reported data, with a fraction of unreported SARS-CoV-2 cases (18.4%; 95%CI = 0-34.0%) before 10 March lockdown. Interestingly, we estimated that transmission rate in the community was reduced by 32% (95%CI = 23-42%) after the first set of restrictions, and by 80% (95%CI = 70-89%) after those adopted on 23 March. Thus, our estimates delineated the characteristics of SARS-CoV2 epidemic before restrictions taking into account unreported data. Moreover, our findings suggested that transmission rates were reduced after the adoption of control measures. However, we cannot evaluate whether part of this reduction might be attributable to other unmeasured factors, and hence further research and more accurate data are needed to understand the extent to which restrictions contributed to the epidemic control.