Project description:ObjectivesTo describe the first outbreak of Candida auris in Brazil, including epidemiological, clinical and microbiological data.MethodsAfter the first Candida auris-colonised patient was diagnosed in a COVID-19 ICU at a hospital in Salvador, Brazil, a multidisciplinary team conducted a local C. auris prevalence investigation. Screening cultures for C. auris were collected from patients, healthcare workers and inanimate surfaces. Risk factors for C. auris colonisation were evaluated, and the fungemia episodes that occurred after the investigation were also analysed and described. Antifungal susceptibility of the C. auris isolates was determined, and they were genotyped with microsatellite analysis.ResultsAmong body swabs collected from 47 patients, eight (n = 8/47, 17%) samples from the axillae were positive for C. auris. Among samples collected from inanimate surfaces, digital thermometers had the highest rate of positive cultures (n = 8/47, 17%). Antifungal susceptibility testing showed MICs of 0.5 to 1 mg/L for AMB, 0.03 to 0.06 mg/L for voriconazole, 2 to 4 mg/L for fluconazole and 0.03 to 0.06 mg/L for anidulafungin. Microsatellite analysis revealed that all C. auris isolates belong to the South Asian clade (Clade I) and had different genotypes. In multivariate analysis, having a colonised digital thermometer was the only independent risk factor associated with C. auris colonisation. Three episodes of C. auris fungemia occurred after the investigation, with 30-day attributable mortality of 33.3%.ConclusionsEmergence of C. auris in Salvador, Brazil, may be related to local C. auris clade I closely related genotypes. Contaminated axillary monitoring thermometers may facilitate the dissemination of C. auris reinforcing the concept that these reusable devices should be carefully cleaned with an effective disinfectant or replaced by other temperature monitoring methods.
Project description:We report an outbreak of Candida auris across multiple healthcare facilities in Israel. For the period of May 2014-May 2022, a total of 209 patients with C. auris infection or colonization were identified. The C. auris incidence rate increased 30-fold in 2021 (p = 0.00015), corresponding in time with surges of COVID-19-related hospitalization. Multilocus sequence typing revealed hospital-level outbreaks with distinct clones. A clade III clone, imported into Israel in 2016, accounted for 48.8% of typed isolates after January 2021 and was more frequently resistant to fluconazole (100% vs. 63%; p = 0.00017) and voriconazole (74% vs. 5.2%; p<0.0001) than were non-clade III isolates. A total of 23% of patients had COVID-19, and 78% received mechanical ventilation. At the hospital level, outbreaks initially involved mechanically ventilated patients in specialized COVID-19 units and then spread sequentially to ventilated non-COVID-19 patients and nonventilated patients.
Project description:The emerging, often multidrug-resistant Candida auris is increasingly being associated with outbreaks in healthcare facilities. Here we describe the molecular epidemiology of a C. auris outbreak during 18 months, which started in 2018 in the high dependency unit (HDU) of a secondary-care hospital in Kuwait. Demographic and clinical data for candidemia and colonized patients were prospectively recorded. Clinical and environmental isolates were subjected to phenotypic and molecular identification; antifungal susceptibility testing by broth microdilution method; PCR-sequencing of ERG11 and FKS1 for resistance mechanisms to triazoles and echinocandins, respectively; and molecular fingerprinting by short tandem repeat (STR) analyses. Seventy-one (17 candidemic and 54 colonized) patients including 26 with candiduria and seven environmental samples yielded C. auris. All isolates were identified as C. auris by Vitek2, MALDI-TOF MS, PCR amplification and/or PCR-sequencing of rDNA. Twelve candidemia and 26 colonized patients were admitted or exposed to HDU. Following outbreak recognition, an intensive screening program was instituted for new patients. Despite treatment of all candidemia and 36 colonized patients, 9 of 17 candidemia and 27 of 54 colonized patients died with an overall crude mortality rate of ~50%. Nearly all isolates were resistant to fluconazole and contained the Y132F mutation in ERG11 except one patient's isolates, which were also distinct by STR typing. Only urine isolates from two patients developed echinocandin resistance with concomitant FKS1 mutations. The transmission of C. auris in this outbreak was linked to infected/colonized patients and the hospital environment. However, despite continuous surveillance and enforcement of infection control measures, sporadic new cases continued to occur, challenging the containment efforts.
Project description:BackgroundCandida auris infections are an emerging global threat with poor clinical outcome, high mortality rate, high transmission rate and outbreak potential. The objective of this work is to describe a multidisciplinary approach towards the investigation and containment of a Candida auris outbreak and the preventive measures adopted in a resource limited setting.MethodsThis outbreak investigational study was conducted at a 1300-bedded tertiary care academic hospital in South India. The study included 15 adult inpatients with laboratory confirmed Candida auris isolates. The outbreak cluster was identified in adult patients admitted from September 2017 to 2019. The system response consisted of a critical alert system for laboratory confirmed Candida auris infection and multidisciplinary 'Candida auris care team' for patient management. The team implemented stringent Infection Prevention and Control (IPC) measures including patient cohorting, standardized therapy and decolonization, staff training, prospective surveillance and introduction of Candida auris specific care bundle.ResultsTwo outbreak clusters were identified; first cluster occurring between October and November 2017 and the second cluster in May 2018. The cohorts consisted of 7 and 8 Candida auris positive patients in the first and second waves of the outbreak respectively with a total survival rate of 93% (14/15). Deployment of containment measures led to gradual decline in the incidence of adult Candida auris positive cases and prevented further cluster formation.ConclusionsThe sustained implementation of guideline and evidence-based IPC measures and training of healthcare workers for improving awareness on systematically following standardized protocols of Candida auris related IPC practices successfully contained Candida auris outbreaks at our hospital. This demonstrates the feasibility of establishing a multidisciplinary model and bundling of practices for preventing Candida auris outbreaks in a Low- and Middle-income country.
Project description:Our understanding of how COVID-19 spreads over a territory needs to be improved. For example, the evaluation of disease spatiotemporal distribution and its association with other characteristics can help identify covariates, model the behavior of the epidemic, and provide useful information for decision making. Data were compiled from the National Population Council (CONAPO), Google, the National Institute of Statistics and Geography (INEGI), and the Secretary of Health. The data describe the cases of COVID and characteristics of the population, such as distribution, mobility, and prevalence of chronic diseases such as diabetes, hypertension, and obesity. These data were processed to be compatible and georeferenced to a common geographic framework to facilitate spatial analysis in a geographic information system (GIS).
Project description:In December 2020, Candida auris emerged in Brazil in the city of Salvador. The first two C. auris colonized patients were in the same COVID-19 intensive care unit. Antifungal susceptibility testing showed low minimal inhibitory concentrations of 1 µg/mL, 2 µg/mL, 0.03 µg/L, and 0.06 µg/mL for amphotericin B, fluconazole, voriconazole, and anidulafungin, respectively. Microsatellite typing revealed that the strains are clonal and belong to the South Asian clade C. auris. The travel restrictions during the COVID-19 pandemic and the absence of travel history among the colonized patients lead to the hypothesis that this species was introduced several months before the recognition of the first case and/or emerged locally in the coastline Salvador area.
Project description:Horizontal transmission of fluconazole-resistant Candida parapsilosis (FRCP) through healthcare workers' hands has contributed to the occurrence of candidemia outbreaks worldwide. Since the first COVID-19 case in Brazil was detected in early 2020, hospitals have reinforced hand hygiene and disinfection practices to minimize SARS-CoV-2 contamination. However, a Brazilian cardiology center, which shares ICU patients with a cancer center under a FRCP outbreak since 2019, reported an increased FRCP candidemia incidence in May 2020. Therefore, the purpose of this study was to investigate an inter-hospital candidemia outbreak caused by FRCP isolates during the first year of the COVID-19 pandemic in Brazil. C. parapsilosis bloodstream isolates obtained from the cancer (n = 35) and cardiology (n = 30) centers in 2020 were submitted to microsatellite genotyping and fluconazole susceptibility testing. The ERG11 gene of all isolates from the cardiology center was sequenced and compared to the corresponding sequences of the FRCP genotype responsible for the cancer center outbreak in 2019. Unprecedentedly, most of the FRCP isolates from the cardiology center presented the same genetic profile and Erg11-Y132F mutation detected in the strain that has been causing the persistent outbreak in the cancer center, highlighting the uninterrupted horizontal transmission of clonal isolates in our hospitals during the COVID-19 pandemic.