Unknown

Dataset Information

0

Cisplatin loaded multiwalled carbon nanotubes reverse drug resistance in NSCLC by inhibiting EMT.


ABSTRACT:

Background

Lung cancer is one of the important health threats worldwide, of which 5-year survival rate is less than 15%. Non-small-cell lung cancer (NSCLC) accounts for about 80% of all lung cancer with high metastasis and mortality.

Methods

Cisplatin loaded multiwalled carbon nanotubes (Pt-MWNTS) were synthesized and used to evaluate the anticancer effect in our study. The NSCLC cell lines A549 (cisplatin sensitive) and A549/DDP (cisplatin resistant) were used in our in vitro assays. MTT was used to determine Cancer cells viability and invasion were measured by MTT assay and Transwell assay, respectively. Apoptosis and epithelial-mesenchymal transition related marker proteins were measured by western blot. The in vivo anti-cancer effect of Pt-MWNTs were performed in male BALB/c nude mice (4-week old).

Results

Pt-MWNTS were synthesized and characterized by X-ray diffraction, Raman, FT-IR spectroscopy and scan electron microscopy. No significant cytotoxicity of MWNTS was detected in both A549/DDP and A549 cell lines. However, Pt-MWNTS showed a stronger inhibition effect on cell growth than free cisplatin, especially on A549/DDP. We found Pt-MWNTS showed higher intracellular accumulation of cisplatin in A549/DDP cells than free cisplatin and resulted in enhanced the percent of apoptotic cells. Western blot showed that application of Pt-MWNTS can significantly upregulate the expression level of Bax, Bim, Bid, Caspase-3 and Caspase-9 while downregulate the expression level of Bcl-2, compared with free cisplatin. Moreover, the expression level of mesenchymal markers like Vimentin and N-cadherin was more efficiently reduced by Pt-MWNTS treatment in A549/DDP cells than free cisplatin. In vivo study in nude mice proved that Pt-MWNTS more effectively inhibited tumorigenesis compared with cisplatin, although both of them had no significant effect on body weight.

Conclusion

Pt-MWNT reverses the drug resistance in the A549/DDP cell line, underlying its possibility of treating NSCLC with cisplatin resistance.

SUBMITTER: Qi Y 

PROVIDER: S-EPMC7836500 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cisplatin loaded multiwalled carbon nanotubes reverse drug resistance in NSCLC by inhibiting EMT.

Qi Yuxin Y   Yang Wenping W   Liu Shuang S   Han Fanjie F   Wang Haibin H   Zhao Yonghong Y   Zhou Yufa Y   Zhou Daijun D  

Cancer cell international 20210125 1


<h4>Background</h4>Lung cancer is one of the important health threats worldwide, of which 5-year survival rate is less than 15%. Non-small-cell lung cancer (NSCLC) accounts for about 80% of all lung cancer with high metastasis and mortality.<h4>Methods</h4>Cisplatin loaded multiwalled carbon nanotubes (Pt-MWNTS) were synthesized and used to evaluate the anticancer effect in our study. The NSCLC cell lines A549 (cisplatin sensitive) and A549/DDP (cisplatin resistant) were used in our in vitro ass  ...[more]

Similar Datasets

| S-EPMC6321179 | biostudies-literature
| S-EPMC3113459 | biostudies-literature
2015-11-27 | GSE75429 | GEO
2012-06-26 | GSE29042 | GEO
| S-EPMC4809211 | biostudies-literature
| S-EPMC3478634 | biostudies-literature
| S-EPMC3130101 | biostudies-literature
| S-EPMC6444741 | biostudies-literature
2012-06-25 | E-GEOD-29042 | biostudies-arrayexpress