Unknown

Dataset Information

0

Fibroblast Nox2 (NADPH Oxidase-2) Regulates ANG II (Angiotensin II)-Induced Vascular Remodeling and Hypertension via Paracrine Signaling to Vascular Smooth Muscle Cells.


ABSTRACT:

Objective

The superoxide-generating Nox2 (NADPH oxidase-2) is expressed in multiple cell types. Previous studies demonstrated distinct roles for cardiomyocyte, endothelial cell, and leukocyte cell Nox2 in ANG II (angiotensin II)-induced cardiovascular remodeling. However, the in vivo role of fibroblast Nox2 remains unclear. Approach and Results: We developed a novel mouse model with inducible fibroblast-specific deficiency of Nox2 (Fibro-Nox2KO mice) and investigated the responses to chronic ANG II stimulation. Fibro-Nox2KO mice showed no differences in basal blood pressure or vessel wall morphology, but the hypertensive response to ANG II infusion (1.1 mg/[kg·day] for 14 days) was substantially reduced as compared to control Nox2-Flox littermates. This was accompanied by a significant attenuation of aortic and resistance vessel remodeling. The conditioned medium of ANG II-stimulated primary fibroblasts induced a significant increase in vascular smooth muscle cell, which was inhibited by the shRNA-mediated knockdown of fibroblast Nox2. Mass spectrometric analysis of the secretome of ANG II-treated primary fibroblasts identified GDF6 (growth differentiation factor 6) as a potential growth factor that may be involved in these effects. Recombinant GDF6 induced a concentration-dependent increase in vascular smooth muscle cell growth while chronic ANG II infusion in vivo significantly increased aortic GDF6 protein levels in control mice but not Fibro-Nox2KO animals. Finally, silencing GDF6 in fibroblasts prevented the induction of vascular smooth muscle cell growth by fibroblast-conditioned media in vitro.

Conclusions

These results indicate that fibroblast Nox2 plays a crucial role in the development of ANG II-induced vascular remodeling and hypertension in vivo. Mechanistically, fibroblast Nox2 may regulate paracrine signaling to medial vascular smooth muscle cells via factors, such as GDF6.

SUBMITTER: Harrison CB 

PROVIDER: S-EPMC7837692 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fibroblast Nox2 (NADPH Oxidase-2) Regulates ANG II (Angiotensin II)-Induced Vascular Remodeling and Hypertension via Paracrine Signaling to Vascular Smooth Muscle Cells.

Harrison Craig B CB   Trevelin Silvia Cellone SC   Richards Daniel A DA   Santos Celio X C CXC   Sawyer Greta G   Markovinovic Andrea A   Zhang Xiaohong X   Zhang Min M   Brewer Alison C AC   Yin Xiaoke X   Mayr Manuel M   Shah Ajay M AM  

Arteriosclerosis, thrombosis, and vascular biology 20201015 2


<h4>Objective</h4>The superoxide-generating Nox2 (NADPH oxidase-2) is expressed in multiple cell types. Previous studies demonstrated distinct roles for cardiomyocyte, endothelial cell, and leukocyte cell Nox2 in ANG II (angiotensin II)-induced cardiovascular remodeling. However, the in vivo role of fibroblast Nox2 remains unclear. Approach and Results: We developed a novel mouse model with inducible fibroblast-specific deficiency of Nox2 (fibroblast-specific Nox2 knockout or Fibro-Nox2KO mice)  ...[more]

Similar Datasets

| S-EPMC2963313 | biostudies-literature
| S-EPMC3105229 | biostudies-literature
2012-03-23 | E-GEOD-35627 | biostudies-arrayexpress
2012-03-23 | GSE35627 | GEO
| S-EPMC6289375 | biostudies-literature
| S-EPMC3204933 | biostudies-literature
| S-EPMC9568551 | biostudies-literature
| S-EPMC10248119 | biostudies-literature
| S-EPMC2773438 | biostudies-literature
| S-EPMC3897123 | biostudies-literature