Unknown

Dataset Information

0

Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment.


ABSTRACT:

Objectives

To develop and test the performance of computerized ultrasound image analysis using deep neural networks (DNNs) in discriminating between benign and malignant ovarian tumors and to compare its diagnostic accuracy with that of subjective assessment (SA) by an ultrasound expert.

Methods

We included 3077 (grayscale, n?=?1927; power Doppler, n?=?1150) ultrasound images from 758 women with ovarian tumors, who were classified prospectively by expert ultrasound examiners according to IOTA (International Ovarian Tumor Analysis) terms and definitions. Histological outcome from surgery (n?=?634) or long-term (??3?years) follow-up (n?=?124) served as the gold standard. The dataset was split into a training set (n?=?508; 314 benign and 194 malignant), a validation set (n?=?100; 60 benign and 40 malignant) and a test set (n?=?150; 75 benign and 75 malignant). We used transfer learning on three pre-trained DNNs: VGG16, ResNet50 and MobileNet. Each model was trained, and the outputs calibrated, using temperature scaling. An ensemble of the three models was then used to estimate the probability of malignancy based on all images from a given case. The DNN ensemble classified the tumors as benign or malignant (Ovry-Dx1 model); or as benign, inconclusive or malignant (Ovry-Dx2 model). The diagnostic performance of the DNN models, in terms of sensitivity and specificity, was compared to that of SA for classifying ovarian tumors in the test set.

Results

At a sensitivity of 96.0%, Ovry-Dx1 had a specificity similar to that of SA (86.7% vs 88.0%; P?=?1.0). Ovry-Dx2 had a sensitivity of 97.1% and a specificity of 93.7%, when designating 12.7% of the lesions as inconclusive. By complimenting Ovry-Dx2 with SA in inconclusive cases, the overall sensitivity (96.0%) and specificity (89.3%) were not significantly different from using SA in all cases (P?=?1.0).

Conclusion

Ultrasound image analysis using DNNs can predict ovarian malignancy with a diagnostic accuracy comparable to that of human expert examiners, indicating that these models may have a role in the triage of women with an ovarian tumor. © 2020 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.

SUBMITTER: Christiansen F 

PROVIDER: S-EPMC7839489 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment.

Christiansen F F   Epstein E L EL   Smedberg E E   Åkerlund M M   Smith K K   Epstein E E  

Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 20210101 1


<h4>Objectives</h4>To develop and test the performance of computerized ultrasound image analysis using deep neural networks (DNNs) in discriminating between benign and malignant ovarian tumors and to compare its diagnostic accuracy with that of subjective assessment (SA) by an ultrasound expert.<h4>Methods</h4>We included 3077 (grayscale, n = 1927; power Doppler, n = 1150) ultrasound images from 758 women with ovarian tumors, who were classified prospectively by expert ultrasound examiners accor  ...[more]

Similar Datasets

| S-EPMC8720926 | biostudies-literature
| S-EPMC6957553 | biostudies-literature
| S-EPMC10490539 | biostudies-literature
| S-EPMC4357383 | biostudies-literature
| S-EPMC9363551 | biostudies-literature
| S-EPMC11341398 | biostudies-literature
| S-EPMC9740105 | biostudies-literature
| S-EPMC10537270 | biostudies-literature
| S-EPMC5838508 | biostudies-literature
| S-EPMC8764284 | biostudies-literature