A hyper-hybrid fuzzy decision-making framework for the sustainable-resilient supplier selection problem: a case study of Malaysian Palm oil industry.
Ontology highlight
ABSTRACT: One of the major challenges of the supply chain managers is to select the best suppliers among all possible ones for their business. Although the research on the supplier selection with regards to green, sustainability or resiliency criteria has been contributed by many papers, simultaneous consideration of these criteria in a fuzzy environment is rarely studied. Hence, this study proposes a fuzzy decision framework to investigate the sustainable-resilient supplier selection problem for a real case study of palm oil industry in Malaysia. Firstly, the resilient-based sustainable criteria are localized for the suppliers' performance evaluation in palm oil industry of Malaysia. Accordingly, 30 criteria in three different aspects (i.e. general, sustainable and resilient) are determined by statistical tests. Moreover, a hyper-hybrid model with the use of FDEMATEL (fuzzy decision-making trial and evaluation laboratory), FBWM (fuzzy best worst method), FANP (fuzzy analytical network process) and FIS (fuzzy inference system), simultaneously is developed to employ their merits in an efficient way. In this framework, regarding the outset, the relationships among the criteria/sub-criteria are obtained by FDEMATEL method. Then, initial weights of the criteria/sub-criteria are measured by FBWM method. Next, the final weights of criteria/sub-criteria considering the interrelationships are calculated by FANP. Finally, the performance of the suppliers is evaluated by FIS method. To show the applicability of this hybrid decision-making framework, an industrial case of palm oil in Malaysia is presented. The findings indicate the high performance of the proposed framework in this concept and identify the most important criteria including the cost in general aspects, resource consumption as the most crucial sustainable criterion and agility as the most important resilient criterion.
SUBMITTER: Fallahpour A
PROVIDER: S-EPMC7840389 | biostudies-literature | 2021 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA