Project description:ObjectivesThis study aimed to characterize corrected QT (QTc) prolongation in a cohort of hospitalized patients with coronavirus disease-2019 (COVID-19) who were treated with hydroxychloroquine and azithromycin (HCQ/AZM).BackgroundHCQ/AZM is being widely used to treat COVID-19 despite the known risk of QT interval prolongation and the unknown risk of arrhythmogenesis in this population.MethodsA retrospective cohort of COVID-19 hospitalized patients treated with HCQ/AZM was reviewed. The QTc interval was calculated before drug administration and for the first 5 days following initiation. The primary endpoint was the magnitude of QTc prolongation, and factors associated with QTc prolongation. Secondary endpoints were incidences of sustained ventricular tachycardia or ventricular fibrillation and all-cause mortality.ResultsAmong 415 patients who received concomitant HCQ/AZM, the mean QTc increased from 443 ± 25 ms to a maximum of 473 ± 40 ms (87 [21%] patients had a QTc ?500 ms). Factors associated with QTc prolongation ?500 ms were age (p < 0.001), body mass index <30 kg/m2 (p = 0.005), heart failure (p < 0.001), elevated creatinine (p = 0.005), and peak troponin (p < 0.001). The change in QTc was not associated with death over the short period of the study in a population in which mortality was already high (hazard ratio: 0.998; p = 0.607). No primary high-grade ventricular arrhythmias were observed.ConclusionsAn increase in QTc was seen in hospitalized patients with COVID-19 treated with HCQ/AZM. Several clinical factors were associated with greater QTc prolongation. Changes in QTc were not associated with increased risk of death.
Project description:BackgroundThere is no known effective therapy for patients with coronavirus disease 2019 (COVID-19). Initial reports suggesting the potential benefit of hydroxychloroquine/azithromycin (HY/AZ) have resulted in massive adoption of this combination worldwide. However, while the true efficacy of this regimen is unknown, initial reports have raised concerns about the potential risk of QT interval prolongation and induction of torsade de pointes (TdP).ObjectiveThe purpose of this study was to assess the change in corrected QT (QTc) interval and arrhythmic events in patients with COVID-19 treated with HY/AZ.MethodsThis is a retrospective study of 251 patients from 2 centers who were diagnosed with COVID-19 and treated with HY/AZ. We reviewed electrocardiographic tracings from baseline and until 3 days after the completion of therapy to determine the progression of QTc interval and the incidence of arrhythmia and mortality.ResultsThe QTc interval prolonged in parallel with increasing drug exposure and incompletely shortened after its completion. Extreme new QTc interval prolongation to >500 ms, a known marker of high risk of TdP, had developed in 23% of patients. One patient developed polymorphic ventricular tachycardia suspected as TdP, requiring emergent cardioversion. Seven patients required premature termination of therapy. The baseline QTc interval of patients exhibiting extreme QTc interval prolongation was normal.ConclusionThe combination of HY/AZ significantly prolongs the QTc interval in patients with COVID-19. This prolongation may be responsible for life-threatening arrhythmia in the form of TdP. This risk mandates careful consideration of HY/AZ therapy in light of its unproven efficacy. Strict QTc interval monitoring should be performed if the regimen is given.
Project description:COVID-2019 pandemic is affecting people worldwide in the absence of an effective treatment strategy. Several suggestive therapeutic options through drug repurposing are recommended, but a complete consensus is not reached. A combination of Hydroxychloroquine (HCQ) and Azithromycin (AZM) has been widely tried and discussed but its administration has also led to potential adversities in patients. Studies are suggesting that most prominent adverse event with HCQ and AZM combination is QT interval prolongation. We studied interaction of HCQ with AZM and subsequent effect of this drug combination on QT interval prolongation. We performed system biological investigation of HCQ and AZM targets and screened important targets and pathways possibly involved in QT interval prolongation. The best core hub protein drug targets involved in QT interval prolongation were identified as HSP90AA1 exclusively associated with HCQ, while AKT1 exclusively associated with AZM on the basis of node degree value. It was found that PI3K/Akt, VEGF, ERBB2 pathways must be given consideration for understanding the role of HCQ and AZM in QT interval prolongation. Conclusion: Computational methods have certain limitations based on source database coverage and prediction algorithms and therefore this data needs experimental correlation to draw final conclusion, but current findings screen targets for QT interval prolongation associated with HCQ and AZM. These proteins and pathways may provide ways to reduce this major risk associated with this combination.
Project description:ImportanceAdministration of hydroxychloroquine with or without azithromycin for the treatment of coronavirus disease 2019 (COVID-19)-associated pneumonia carries increased risk of corrected QT (QTc) prolongation and cardiac arrhythmias.ObjectiveTo characterize the risk and degree of QT prolongation in patients with COVID-19 in association with their use of hydroxychloroquine with or without concomitant azithromycin.Design, setting, and participantsThis was a cohort study performed at an academic tertiary care center in Boston, Massachusetts, of patients hospitalized with at least 1 positive COVID-19 nasopharyngeal polymerase chain reaction test result and clinical findings consistent with pneumonia who received at least 1 day of hydroxychloroquine from March 1, 2020, through April 7, 2020.Main outcomes and measuresChange in QT interval after receiving hydroxychloroquine with or without azithromycin; occurrence of other potential adverse drug events.ResultsAmong 90 patients given hydroxychloroquine, 53 received concomitant azithromycin; 44 (48.9%) were female, and the mean (SD) body mass index was 31.5 (6.6). Hypertension (in 48 patients [53.3%]) and diabetes mellitus (in 26 patients [28.9%]) were the most common comorbid conditions. The overall median (interquartile range) baseline QTc was 455 (430-474) milliseconds (hydroxychloroquine, 473 [454-487] milliseconds vs hydroxychloroquine and azithromycin, 442 [427-461] milliseconds; P?<?.001). Those receiving concomitant azithromycin had a greater median (interquartile range) change in QT interval (23 [10-40] milliseconds) compared with those receiving hydroxychloroquine alone (5.5 [-15.5 to 34.25] milliseconds; P?=?.03). Seven patients (19%) who received hydroxychloroquine monotherapy developed prolonged QTc of 500 milliseconds or more, and 3 patients (8%) had a change in QTc of 60 milliseconds or more. Of those who received concomitant azithromycin, 11 of 53 (21%) had prolonged QTc of 500 milliseconds or more and 7 of 53 (13 %) had a change in QTc of 60 milliseconds or more. The likelihood of prolonged QTc was greater in those who received concomitant loop diuretics (adjusted odds ratio, 3.38 [95% CI, 1.03-11.08]) or had a baseline QTc of 450 milliseconds or more (adjusted odds ratio, 7.11 [95% CI, 1.75-28.87]). Ten patients had hydroxychloroquine discontinued early because of potential adverse drug events, including intractable nausea, hypoglycemia, and 1 case of torsades de pointes.Conclusions and relevanceIn this cohort study, patients who received hydroxychloroquine for the treatment of pneumonia associated with COVID-19 were at high risk of QTc prolongation, and concurrent treatment with azithromycin was associated with greater changes in QTc. Clinicians should carefully weigh risks and benefits if considering hydroxychloroquine and azithromycin, with close monitoring of QTc and concomitant medication usage.
Project description:BackgroundCombinations of hydroxychloroquine (HCQ) and azithromycin have been promoted as treatments for COVID-19 based on small, uncontrolled clinical trials that have not assessed potential risks. Risks of treatment include QT segment prolongation, Torsades de Pointes (TdP), and death. This comparative pharmacovigilance analysis evaluated the risk of these events.MethodsData from the U.S. Food and Drug Administration's Adverse Event Reporting System (FAERS) (>13 million total reports) were used. Queries extracted reports based on exposures of HCQ/chloroquine (CQ) alone, azithromycin alone, HCQ/CQ + azithromycin, amoxicillin alone, HCQ/CQ + amoxicillin alone. Amoxicillin served as a control. Events of interest included death and TdP/QT prolongation as well as accidents/injuries and depression as control events. Proportional Reporting Ratios (PRR) and 95% confidence intervals (CI) were calculated where a lower limit of the of 95% CI (Lower95CI) value of ≥2.0 is interpreted as a potential safety signal.ResultsLower95CIs for HCQ/CQ alone showed no potential safety signals for TdP/QT prolongation, death, or any of the control events included. The PRRs and 95% CIs for TdP/QT prolongation was 1.43 (1.29-2.59) with HCQ/CQ use alone and 4.10 (3.80-4.42) for azithromycin alone. For the combined HCQ/CQ + azithromycin group, the PRR and 95% CI was 3.77 (1.80-7.87). For the control of amoxicillin, there were no safety signals when used alone or in combination with HCQ/CQ.ConclusionsHCQ/CQ use was not associated with a safety signal in this analysis of FAERS data. However, azithromycin used alone was associated with TdP/QT prolongation events and should be used with caution.
Project description:PurposeHydroxychloroquine, chloroquine, azithromycin, and lopinavir/ritonavir are drugs that were used for the treatment of coronavirus disease 2019 (COVID-19) during the early pandemic period. It is well-known that these agents can prolong the QTc interval and potentially induce Torsades de Pointes (TdP). We aim to assess the prevalence and risk of QTc prolongation and arrhythmic events in COVID-19 patients treated with these drugs.MethodsWe searched electronic databases from inception to September 30, 2020 for studies reporting peak QTc ≥500 ms, peak QTc change ≥60 ms, peak QTc interval, peak change of QTc interval, ventricular arrhythmias, TdP, sudden cardiac death, or atrioventricular block (AVB). All meta-analyses were conducted using a random-effects model.ResultsForty-seven studies (three case series, 35 cohorts, and nine randomized controlled trials [RCTs]) involving 13 087 patients were included. The pooled prevalence of peak QTc ≥500 ms was 9% (95% confidence interval [95%CI], 3%-18%) and 8% (95%CI, 3%-14%) in patients who received hydroxychloroquine/chloroquine alone or in combination with azithromycin, respectively. Likewise, the use of hydroxychloroquine (risk ratio [RR], 2.68; 95%CI, 1.56-4.60) and hydroxychloroquine + azithromycin (RR, 3.28; 95%CI, 1.16-9.30) was associated with an increased risk of QTc prolongation compared to no treatment. Ventricular arrhythmias, TdP, sudden cardiac death, and AVB were reported in <1% of patients across treatment groups. The only two studies that reported individual data of lopinavir/ritonavir found no cases of QTc prolongation.ConclusionsCOVID-19 patients treated with hydroxychloroquine/chloroquine with or without azithromycin had a relatively high prevalence and risk of QTc prolongation. However, the prevalence of arrhythmic events was very low, probably due to underreporting. The limited information about lopinavir/ritonavir showed that it does not prolong the QTc interval.
Project description:BackgroundAzithromycin exposure has been reported to increase the risk of QT prolongation and cardiovascular death. However, findings on the association between azithromycin and cardiovascular death are controversial, and azithromycin is still used in actual practice. Additionally, quantitative assessments of risk have not been performed, including the risk of QT prolongation when patients are exposed to azithromycin in a real-world clinical setting. Therefore, in this study, we aimed to evaluate the risk of exposure to azithromycin on QT prolongation in a real-world clinical setting using a 21-year medical history database of a tertiary medical institution.MethodsWe analyzed the electrocardiogram results and relevant electronic health records of 402,607 subjects in a tertiary teaching hospital in Korea from 1996 to 2015. To evaluate the risk of QT prolongation of azithromycin, we conducted a case-control analysis using amoxicillin for comparison. Multiple logistic regression analysis was performed to correct for age, sex, accompanying drugs, and disease.ResultsThe odds ratio (OR) for QT prolongation (QTc>450 ms in male and >460 ms in female) on azithromycin exposure was 1.40 (95% confidence interval [CI], 1.23-1.59), and the OR for severe QT prolongation (QTc>500 ms) was 1.43 (95% CI, 1.13-1.82). On the other hand, the ORs on exposure to amoxicillin were 1.06 (95% CI, 0.97-1.15) and 0.88 (95% CI, 0.70-1.09). In a subgroup analysis, the risk of QT prolongation in patients aged between 60 and 80 years was significantly higher when they are exposed to azithromycin.ConclusionsThe risk of QT prolongation was increased when patients, particularly the elderly aged 60-79 years, were exposed to azithromycin. Therefore, clinicians should pay exercise caution using azithromycin or consider using other antibiotics, such as amoxicillin, instead of azithromycin.
Project description:The ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn the attention of researchers and clinicians from several disciplines and sectors who are trying to find durable solutions both at preventive and treatment levels. To date, there is no approved effective treatment or vaccine available to control the coronavirus disease-2019 (COVID-19). The preliminary in vitro studies on viral infection models showed potential antiviral activities of type I and III interferons (IFNs), chloroquine (CQ)/hydroxychloroquine (HCQ), and azithromycin (AZM); however, the clinical studies on COVID-19 patients treated with CQ/HCQ and AZM led to controversies in different regions due to their adverse side effects, as well as their combined treatment could prolong the QT interval. Interestingly, the treatment with type I IFNs showed encouraging results. Moreover, the different preliminary reports of COVID-19 candidate vaccines showcase promising results by inducing the production of a high level of neutralizing antibodies (NAbs) and specific T cell-mediated immune response in almost all participants. The present review aims to summarize and analyze the recent progress evidence concerning the use of IFNs, CQ/HCQ, and AZM for the treatment of COVID-19. The available data on immunization options to prevent the COVID-19 are also analyzed with the aim to present the promising options which could be investigated in future for sustainable control of the pandemic.
Project description:One of the most impact issues in recent years refers to the COVID-19 pandemic, the consequences of which thousands of deaths recorded worldwide, are still inferior understood. Its impacts on the environment and aquatic biota constitute a fertile field of investigation. Thus, to predict the impact of the indiscriminate use of azithromycin (AZT) and hydroxychloroquine (HCQ) in this pandemic context, we aim to assess their toxicological risks when isolated or in combination, using zebrafish (Danio rerio) as a model system. In summary, we observed that 72 h of exposure to AZT and HCQ (alone or in binary combination, both at 2.5 μg/L) induced the reduction of total protein levels, accompanied by increased levels of thiobarbituric acid reactive substances, hydrogen peroxide, reactive oxygen species and nitrite, suggesting a REDOX imbalance and possible oxidative stress. Molecular docking analysis further supported this data by demonstrating a strong affinity of AZT and HCQ with their potential antioxidant targets (catalase and superoxide dismutase). In the protein-protein interaction network analysis, AZT showed a putative interaction with different cytochrome P450 molecules, while HCQ demonstrated interaction with caspase-3. The functional enrichment analysis also demonstrated diverse biological processes and molecular mechanisms related to the maintenance of REDOX homeostasis. Moreover, we also demonstrated an increase in the AChE activity followed by a reduction in the neuromasts of the head when zebrafish were exposed to the mixture AZT + HCQ. These data suggest a neurotoxic effect of the drugs. Altogether, our study demonstrated that short exposure to AZT, HCQ or their mixture induced physiological alterations in adult zebrafish. These effects can compromise the health of these animals, suggesting that the increase of AZT and HCQ due to COVID-19 pandemic can negatively impact freshwater ecosystems.
Project description:Chloroquine and hydroxychloroquine are now being widely used for treatment of COVID-19. Both medications prolong the QT interval and accordingly may put patients at increased risk for torsades de pointes and sudden death. Published guidance documents vary in their recommendations for monitoring and managing these potential adverse effects. Accordingly, we set out to conduct a systematic review of the arrhythmogenic effect of short courses of chloroquine or hydroxychloroquine. We searched on MEDLINE and Embase, as well as in the gray literature up to April 17, 2020, for the risk of QT prolongation, torsades, ventricular arrhythmia, and sudden death with short-term chloroquine and hydroxychloroquine usage. This search resulted in 390 unique records, of which 41 were ultimately selected for qualitative synthesis and which included data on 1515 COVID-19 patients. Approximately 10% of COVID-19 patients treated with these drugs developed QT prolongation. We found evidence of ventricular arrhythmia in 2 COVID-19 patients from a group of 28 treated with high-dose chloroquine. Limitations of these results are unclear follow-up and possible publication/reporting bias, but there is compelling evidence that chloroquine and hydroxychloroquine induce significant QT-interval prolongation and potentially increase the risk of arrhythmia. Daily electrocardiographic monitoring and other risk mitigation strategies should be considered in order to prevent possible harms from what is currently an unproven therapy.