Project description:Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol levels. Since cholesterol retention and cholesterol crystals in arterial walls are key pathogenetic factors for atherogenesis, we assessed the therapeutic potential of increasing cholesterol solubility in vivo. Here we show that treatment of murine atherosclerosis with the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that solubilizes lipophilic substances, reduced atherosclerotic plaque size, cholesterol crystal (CC) load and promoted plaque regression even under continuing Western diet. CD solubilized CC and promoted cholesterylester and oxysterol production in macrophages leading to liver X receptor-mediated transcriptional reprogramming with increased cholesterol efflux and decreased inflammation. CD treatment may thus be used to increase cholesterol solubility and clearance to prevent or treat atherosclerosis.
Project description:BackgroundAtherosclerosis-related cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Cholesterol crystals (CCs) induce inflammation in atherosclerosis and are associated with unstable plaques and poor prognosis, but no drug can remove CCs in the clinic currently.MethodsWe generated a phospholipid-based and high-density lipoprotein (HDL)-like nanoparticle, miNano, and determined CC-dissolving capacity, cholesterol efflux property, and anti-inflammation effects of miNano in vitro. Both normal C57BL/6J and Apoe-deficient mice were used to explore the accumulation of miNano in atherosclerotic plaques. The efficacy and safety of miNano administration to treat atherosclerosis were evaluated in the Ldlr-deficient atherosclerosis model. The CC-dissolving capacity of miNano was also detected using human atherosclerotic plaques ex vivo.FindingsWe found that miNano bound to and dissolved CCs efficiently in vitro, and miNano accumulated in atherosclerotic plaques, co-localized with CCs and macrophages in vivo. Administration of miNano inhibited atherosclerosis and improved plaque stability by reducing CCs and macrophages in Ldlr-deficient mice with favorable safety profiles. In macrophages, miNano prevented foam cell formation by enhancing cholesterol efflux and suppressed inflammatory responses via inhibiting TLR4-NF-κB pathway. Finally, in an ex vivo experiment, miNano effectively dissolved CCs in human aortic atherosclerotic plaques.InterpretationTogether, our work finds that phospholipid-based and HDL-like nanoparticle, miNano, has the potential to treat atherosclerosis by targeting CCs and stabilizing plaques.FundingThis work was supported by the National Institutes of Health HL134569, HL109916, HL136231, and HL137214 to Y.E.C, HL138139 to J.Z., R21NS111191 to A.S., by the American Heart Association 15SDG24470155, Grant Awards (U068144 from Bio-interfaces and G024404 from M-BRISC) at the University of Michigan to Y.G., by the American Heart Association 19PRE34400017 and Rackham Helen Wu award to M.Y., NIH T32 GM07767 to K. H., Barbour Fellowship to D.L.
Project description:BackgroundDuring atherogenesis, cholesterol precipitates into cholesterol crystals (CC) in the vessel wall, which trigger plaque inflammation by activating the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome. We investigated the relationship between CC, complement and NLRP3 in patients with cardiovascular disease.MethodsWe analysed plasma, peripheral blood mononuclear cells (PBMC) and carotid plaques from patients with advanced atherosclerosis applying ELISAs, multiplex cytokine assay, qPCR, immunohistochemistry, and gene profiling.FindingsTranscripts of interleukin (IL)-1beta(β) and NLRP3 were increased and correlated in PBMC from patients with acute coronary syndrome (ACS). Priming of these cells with complement factor 5a (C5a) and tumour necrosis factor (TNF) before incubation with CC resulted in increased IL-1β protein when compared to healthy controls. As opposed to healthy controls, systemic complement was significantly increased in patients with stable angina pectoris or ACS. In carotid plaques, complement C1q and C5b-9 complex accumulated around CC-clefts, and complement receptors C5aR1, C5aR2 and C3aR1 were higher in carotid plaques compared to control arteries. Priming human carotid plaques with C5a followed by CC incubation resulted in pronounced release of IL-1β, IL-18 and IL-1α. Additionally, mRNA profiling demonstrated that C5a and TNF priming followed by CC incubation upregulated plaque expression of NLRP3 inflammasome components.InterpretationWe demonstrate that CC are important local- and systemic complement activators, and we reveal that the interaction between CC and complement could exert its effect by activating the NLRP3 inflammasome, thus promoting the progression of atherosclerosis.
Project description:Plasma levels of high-density lipoprotein (HDL) inversely correlate with the incidence of cardiovascular diseases (CVD). The causal relationship between plasma HDL-cholesterol levels and CVD has been called into question by Mendelian randomization studies and the majority of clinical trials not showing any benefit of plasma HDL-cholesterol raising drugs on CVD. Nonetheless, recent Mendelian randomization studies including an increased number of CVD cases compared to earlier studies have confirmed that HDL-cholesterol levels and CVD are causally linked. Moreover, several studies in large population cohorts have shown that the cholesterol efflux capacity of HDL inversely correlates with CVD. Cholesterol efflux pathways exert anti-inflammatory and anti-atherogenic effects by suppressing proliferation of hematopoietic stem and progenitor cells, and inflammation and inflammasome activation in macrophages. Cholesterol efflux pathways also suppress the accumulation of cholesteryl esters in macrophages, i.e. macrophage foam cell formation. Recent single-cell RNASeq studies on atherosclerotic plaques have suggested that macrophage foam cells have lower expression of inflammatory genes than non-foam cells, probably reflecting liver X receptor activation, upregulation of ATP Binding Cassette A1 and G1 cholesterol transporters and suppression of inflammation. However, when these pathways are defective lesional foam cells may become pro-inflammatory.
Project description:Cardiovascular disease (CVD) is the leading cause of death globally. The underlying pathological driver of CVD is atherosclerosis. The primary risk factor for atherosclerosis is elevated low-density lipoprotein cholesterol (LDL-C). Dysregulation of cholesterol metabolism is synonymous with a rise in LDL-C. Due to the complexity of cholesterol metabolism and atherosclerosis mathematical models are routinely used to explore their non-trivial dynamics. Mathematical modelling has generated a wealth of useful biological insights, which have deepened our understanding of these processes. To date however, no model has been developed which fully captures how whole-body cholesterol metabolism intersects with atherosclerosis. The main reason for this is one of scale. Whole body cholesterol metabolism is defined by macroscale physiological processes, while atherosclerosis operates mainly at a microscale. This work describes how a model of cholesterol metabolism was combined with a model of atherosclerotic plaque formation. This new model is capable of reproducing the output from its parent models. Using the new model, we demonstrate how this system can be utilized to identify interventions that lower LDL-C and abrogate plaque formation.
Project description:Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro-inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low-density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR-A1 and lectin-like oxLDL receptor-1 (LOX-1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out-flowed from macrophages by cholesterol ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 and SR-BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells.
Project description:Inflammation is associated with development of atherosclerosis, and cholesterol crystals (CC) have long been recognized as a hallmark of atherosclerotic lesions. CC appear early in the atheroma development and trigger inflammation by NLRP3 inflammasome activation. In this study we hypothesized whether CC employ the complement system to activate inflammasome/caspase-1, leading to release of mature IL-1?, and whether complement activation regulates CC-induced cytokine production. In this study we describe that CC activated both the classical and alternative complement pathways, and C1q was found to be crucial for the activation. CC employed C5a in the release of a number of cytokines in whole blood, including IL-1? and TNF. CC induced minimal amounts of cytokines in C5-deficient whole blood, until reconstituted with C5. Furthermore, C5a and TNF in combination acted as a potent primer for CC-induced IL-1? release by increasing IL-1? transcripts. CC-induced complement activation resulted in upregulation of complement receptor 3 (CD11b/CD18), leading to phagocytosis of CC. Also, CC mounted a complement-dependent production of reactive oxygen species and active caspase-1. We conclude that CC employ the complement system to induce cytokines and activate the inflammasome/caspase-1 by regulating several cellular responses in human monocytes. In light of this, complement inhibition might be an interesting therapeutic approach for treatment of atherosclerosis.
Project description:Background and aimsApolipoprotein A-I (ApoA-I), the main component of high-density lipoprotein (HDL), not only promotes reverse cholesterol transport (RCT) in atherosclerosis but also increases insulin secretion in pancreatic β-cells, suggesting that interventions which raise HDL levels may be beneficial in diabetes-associated cardiovascular disease (CVD). Previously, we showed that TNF-related apoptosis-inducing ligand (TRAIL) deletion in Apolipoprotein Eknockout (Apoe-/- ) mice results in diabetes-accelerated atherosclerosis in response to a "Western" diet. Here, we sought to identify whether reconstituted HDL (rHDL) could improve features of diabetes-associated CVD in Trail-/-Apoe-/- mice.Methods and resultsTrail-/-Apoe-/- and Apoe-/- mice on a "Western" diet for 12 weeks received 3 weekly infusions of either PBS (vehicle) or rHDL (containing ApoA-I (20 mg/kg) and 1-palmitoyl-2-linoleoyl phosphatidylcholine). Administration of rHDL reduced total plasma cholesterol, triglyceride, and glucose levels in Trail-/-Apoe-/- but not in Apoe-/- mice, with no change in weight gain observed. rHDL treatment also improved glucose clearance in response to insulin and glucose tolerance tests. Immunohistological analysis of pancreata revealed increased insulin expression/production and a reduction in macrophage infiltration in mice with TRAIL deletion. Furthermore, atherosclerotic plaque size in Trail-/-Apoe-/- mice was significantly reduced associating with increased expression of the M2 macrophage marker CD206, suggesting HDL's involvement in the polarization of macrophages. rHDL also increased vascular mRNA expression of RCT transporters, ABCA1 and ABCG1, in Trail-/-Apoe-/- but not in Apoe-/- mice. Conclusions. rHDL improves features of diabetes-associated atherosclerosis in mice. These findings support the therapeutic potential of rHDL in the treatment of atherosclerosis and associated diabetic complications. More studies are warranted to understand rHDL's mechanism of action.