Unknown

Dataset Information

0

Autophagy machinery promotes the chaperone-mediated formation and compartmentalization of protein aggregates during appressorium development by the rice blast fungus.


ABSTRACT: The chaperone-mediated sequestration of misfolded proteins into specialized quality control compartments represents an important strategy for maintaining protein homeostasis in response to stress. However, precisely how this process is controlled in time and subcellular space and integrated with the cell's protein refolding and degradation pathways remains unclear. We set out to understand how aggregated proteins are managed during infection-related development by a globally devastating plant pathogenic fungus and to determine how impaired protein quality control impacts cellular differentiation and pathogenesis in this system. Here we show that in the absence of Hsp104 disaggregase activity, aggregated proteins are spatially sequestered into quality control compartments within conidia, but not within terminally differentiated infection cells, and thus spatial protein quality control is cell type-dependent. We demonstrate that impaired aggregate resolution results in a short-term developmental penalty but has no significant impact upon appressorium function. Finally, we show that, somewhat unexpectedly, the autophagy machinery is necessary for the normal formation and compartmentalization of protein aggregates. Taken together, our findings provide important new insight into spatial protein quality control during the process of terminal cellular differentiation by a globally important model eukaryote and reveal a new level of interplay between major proteostasis pathways.

SUBMITTER: Rogers AM 

PROVIDER: S-EPMC7851963 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Autophagy machinery promotes the chaperone-mediated formation and compartmentalization of protein aggregates during appressorium development by the rice blast fungus.

Rogers Audra Mae AM   Egan Martin John MJ  

Molecular biology of the cell 20200820 21


The chaperone-mediated sequestration of misfolded proteins into specialized quality control compartments represents an important strategy for maintaining protein homeostasis in response to stress. However, precisely how this process is controlled in time and subcellular space and integrated with the cell's protein refolding and degradation pathways remains unclear. We set out to understand how aggregated proteins are managed during infection-related development by a globally devastating plant pa  ...[more]

Similar Datasets

| S-EPMC11219472 | biostudies-literature
| S-EPMC5549910 | biostudies-other
| S-EPMC5491321 | biostudies-literature
| S-EPMC3024261 | biostudies-literature
| S-EPMC8878131 | biostudies-literature
| S-EPMC2441471 | biostudies-literature
| S-EPMC6638267 | biostudies-literature
| S-EPMC5575296 | biostudies-literature
| S-EPMC3276559 | biostudies-literature
2012-02-13 | GSE30069 | GEO