Project description:Lung cancer screening by helical low-dose computed tomography detects nonsolid nodules that may be lung adenocarcinoma precursors. Aspirin's anti-inflammatory properties make it an attractive target for prevention of multiple cancers, including lung cancer. Therefore, we conducted a phase IIb trial (NCT02169271) to study the efficacy of low-dose aspirin to reduce the size of subsolid lung nodules (SSNs). A total of 98 current or former smokers (67.3% current) undergoing annual low-dose computed tomography screening with persistent SSNs were randomly assigned to receive aspirin 100 mg/day or placebo for 1 year. There was no difference in change in the sum of the longest diameters of target nodules in the placebo and aspirin arm after 12 months of treatment (-0.12 mm [SD = 1.55 mm] and +0.30 mm [SD= 2.54 mm], respectively; 2-sided P = .33 primary endpoint). There were no changes observed in subgroup analyses by individual characteristics or nodule type. One year of low-dose aspirin did not show any effect on lung SSNs. SSNs regression may not be the proper target for aspirin, and/or longer duration may be needed to see SSNs modifications.
Project description:To evaluate whether, and to which extent, experienced radiologists are able to visually correctly differentiate transient from persistent subsolid nodules from a single CT examination alone and to determine CT morphological features to make this differentiation.We selected 86 transient and 135 persistent subsolid nodules from the National Lung Screening Trial (NLST) database. Four experienced radiologists visually assessed a predefined list of morphological features and gave a final judgment on a continuous scale (0-100). To assess observer performance, area under the receiver operating characteristic (ROC) curve was calculated. Statistical differences of morphological features between transient and persistent lesions were calculated using Chi-square. Inter-observer agreement of morphological features was evaluated by percentage agreement.Forty-nine lesions were excluded by at least 2 observers, leaving 172 lesions for analysis. On average observers were able to differentiate transient from persistent subsolid nodules ≥ 10 mm with an area under the curve of 0.75 (95% CI 0.67-0.82). Nodule type, lesion margin, presence of a well-defined border, and pleural retraction showed significant differences between transient and persistent lesions in two observers. Average pair-wise percentage agreement for these features was 81%, 64%, 47% and 89% respectively. Agreement for other morphological features varied from 53% to 95%.The visual capacity of experienced radiologists to differentiate persistent and transient subsolid nodules is moderate in subsolid nodules larger than 10 mm. Performance of the visual assessment of CT morphology alone is not sufficient to generally abandon a short-term follow-up for subsolid nodules.
Project description:Screening CT identifies small peripheral lung nodules, some of which may be pre- or early invasive neoplasia. Secondary end point analysis of a previous chemoprevention trial in individuals with bronchial dysplasia showed reduction in size of peripheral nodules by inhaled budesonide. We performed a randomized, double-blind, placebo-controlled phase IIb trial of inhaled budesonide in current and former smokers with CT-detected lung nodules that were persistent for at least 1 year. A total of 202 individuals received inhaled budesonide, 800 μg twice daily or placebo for 1 year. The primary endpoint was the effect of treatment on target nodule size in a per person analysis after 1 year. The per person analysis showed no significant difference between the budesonide and placebo arms (response rate 2% and 1%, respectively). Although the per lesion analysis revealed a significant effect of budesonide on regression of existing target nodules (P = 0.02), the appearance of new lesions was similar in both groups and thus the significance was lost in the analysis of all lesions. The evaluation by nodule type revealed a nonsignificant trend toward regression of nonsolid and partially solid lesions after budesonide treatment. Budesonide was well tolerated, with no unexpected side effects identified. Treatment with inhaled budesonide for 1 year did not significantly affect peripheral lung nodule size. There was a trend toward regression of nonsolid and partially solid nodules after budesonide treatment. Because a subset of these nodules is more likely to represent precursors of adenocarcinoma, additional follow-up is needed.
Project description:The broad application of low-dose computed tomography (CT) screening has resulted in the detection of many small pulmonary nodules. In Asia, a large number of these detected nodules with a radiological ground glass pattern are reported as lung adenocarcinomas or premalignant lesions, especially among female non-smokers. In this review article, we discuss controversial issues and conditions involving these subsolid pulmonary nodules that we often face in Asia, including a lack or insufficiency of current guidelines; the roles of preoperative biopsy and imaging; the location of lesions; appropriate selection of localization techniques; the roles of dissection and sampling of frozen sections and lymph nodes; multifocal lesions; and the roles of non-surgical treatment modalities. For these complex issues, we have tried to present up-to-date evidence and our own opinions regarding the management of subsolid nodules. It is our hope that this article helps surgeons and physicians to manage the complex issues involving ground glass nodules (GGNs) in a balanced manner in their daily practice and provokes further discussion towards better guidelines and/or algorithms.
Project description:The purpose of this case-cohort study was to investigate whether the frequency and computed tomography (CT) features of pulmonary nodules posed a risk for the future development of lung cancer (LC) at a different location. Patients scanned between 2004 and 2012 at two Dutch academic hospitals were cross-linked with the Dutch Cancer Registry. All patients who were diagnosed with LC by 2014 and a random selection of LC-free patients were considered. LC patients who were determined to be LC-free at the time of the scan and all LC-free patients with an adequate scan were included. The nodule count and types (solid, part-solid, ground-glass, and perifissural) were recorded per scan. Age, sex, and other CT measures were included to control for confounding factors. The cohort included 163 LC patients and 1178 LC-free patients. Cox regression revealed that the number of ground-glass nodules and part-solid nodules present were positively correlated to future LC risk. The area under the receiver operating curve of parsimonious models with and without nodule type information were 0.827 and 0.802, respectively. The presence of subsolid nodules in a clinical setting may be a risk factor for future LC development in another pulmonary location in a dose-dependent manner. Replication of the results in screening cohorts is required for maximum utility of these findings.
Project description:Conventionally, evaluation of a new drug, A, is done in three phases. Phase I is based on toxicity to determine a "maximum tolerable dose" (MTD) of A, phase II is conducted to decide whether A at the MTD is promising in terms of response probability, and if so a large randomized phase III trial is conducted to compare A to a control treatment, C, usually based on survival time or progression free survival time. It is widely recognized that this paradigm has many flaws. A recent approach combines the first two phases by conducting a phase I-II trial, which chooses an optimal dose based on both efficacy and toxicity, and evaluation of A at the selected optimal phase I-II dose then is done in a phase III trial. This paper proposes a new design paradigm, motivated by the possibility that the optimal phase I-II dose may not maximize mean survival time with A. We propose a hybridized design, which we call phase I-II/III, that combines phase I-II and phase III by allowing the chosen optimal phase I-II dose of A to be re-optimized based on survival time data from phase I-II patients and the first portion of phase III. The phase I-II/III design uses adaptive randomization in phase I-II, and relies on a mixture model for the survival time distribution as a function of efficacy, toxicity, and dose. A simulation study is presented to evaluate the phase I-II/III design and compare it to the usual approach that does not re-optimize the dose of A in phase III.
Project description:ObjectivesTo validate the performances of two prediction models (Brock and Lee models) for the differentiation of minimally invasive adenocarcinoma (MIA) and invasive pulmonary adenocarcinoma (IPA) from preinvasive lesions among subsolid nodules (SSNs).DesignA retrospective cohort study.SettingA tertiary university hospital in South Korea.Participants410 patients with 410 incidentally detected SSNs who underwent surgical resection for the pulmonary adenocarcinoma spectrum between 2011 and 2015.Primary and secondary outcome measuresUsing clinical and radiological variables, the predicted probability of MIA/IPA was calculated from pre-existing logistic models (Brock and Lee models). Areas under the receiver operating characteristic curve (AUCs) were calculated and compared between models. Performance metrics including sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) were also obtained.ResultsFor pure ground-glass nodules (n=101), the AUC of the Brock model in differentiating MIA/IPA (59/101) from preinvasive lesions (42/101) was 0.671. Sensitivity, specificity, accuracy, PPV and NPV based on the optimal cut-off value were 64.4%, 64.3%, 64.4%, 71.7% and 56.3%, respectively. Sensitivity, specificity, accuracy, PPV and NPV according to the Lee criteria were 76.3%, 42.9%, 62.4%, 65.2% and 56.3%, respectively. AUC was not obtained for the Lee model as a single cut-off of nodule size (≥10 mm) was suggested by this model for the assessment of pure ground-glass nodules. For part-solid nodules (n=309; 26 preinvasive lesions and 283 MIA/IPAs), the AUC was 0.746 for the Brock model and 0.771 for the Lee model (p=0.574). Sensitivity, specificity, accuracy, PPV and NPV were 82.3%, 53.8%, 79.9%, 95.1% and 21.9%, respectively, for the Brock model and 77.0%, 69.2%, 76.4%, 96.5% and 21.7%, respectively, for the Lee model.ConclusionsThe performance of prediction models for the incidentally detected SSNs in differentiating MIA/IPA from preinvasive lesions might be suboptimal. Thus, an alternative risk calculation model is required for the incidentally detected SSNs.
Project description:ObjectivesIncreasing evidence indicates that microbiota dysbiosis in the human body may play vital roles in carcinogenesis. However, the relationship between microbiome and lung cancer remains unclear. In this study, we aimed to characterize the microbiome in early stage of lung adenocarcinoma (LUAD), which presented as subsolid nodules (SSN) or solid nodules (SN).Materials and methodsWe performed 16S rRNA sequencing of 35 pairs (10 SSN and 25 SN) of LUAD tumor tissues and paired adjacent normal tissues. Machine learning was used to identify microbial signatures and construct predictive models.ResultsSSN has higher microbiome richness and diversity compared with SN (richness p = 0.017, Shannon index p = 0.17), and the microbiome composition of SSN is distinct from that of SN (Bray-Curtis p = 0.013, unweighted unifrac p = 0.001). Phylum Chloroflexi (p = 0.009), Gemmatimonadetes (p = 0.018) and genus including Cloacibacterium (p = 0.003), Subdoligranulum (p = 0.002), and Mycobacterium (p = 0.034) were significantly increased in SSN. Tumor and normal tissues had similar richness and diversity, as well as overall microbiome composition. Probiotics with anti-cancer potential, like Lactobacillus, showed elevated levels in normal tissues (p = 0.018). A random forest model with 20 genera-based biomarkers achieved high accuracy for LUAD prediction (area under curve, AUC = 0.879). Meanwhile, a five genera-based signature can accurately discriminate SSN between SN (AUC = 0.950). Cross-validation of these two models also showed high predictive performance (LUAD AUC = 0.813, SSN AUC = 0.933).ConclusionsThis study demonstrates, for the first time, the tumor bacterial microbiome composition of LUAD manifested as SSN is distinct from that presented as SN, which adds new knowledge to SSN in the perspective of microbiome. Furthermore, microbiome signatures showed good performance to predict LUAD or SSN.
Project description:Subsolid pulmonary nodules are commonly encountered in lung cancer screening and clinical routine. Compared to other nodule types, subsolid nodules are associated with a higher malignancy probability for which the size and mass of the nodule and solid core are important indicators. However, reliably measuring these characteristics on computed tomography (CT) can be hampered by the presence of vessels encompassed by the nodule, since vessels have similar CT attenuation as solid cores. This can affect treatment decisions and patient management. We present a method based on voxel classification to automatically identify vessels and solid cores in given subsolid nodules on CT. Three experts validated our method on 170 screen-detected subsolid nodules from the Multicentric Italian Lung Disease trial. The agreement between the proposed method and the observers was substantial for vessel detection and moderate for solid core detection, which was similar to the inter-observer agreement. We found a relatively high variability in the inter-observer agreement and low method-observer agreements for delineating the borders of vessels and solid cores, illustrating the difficulty of this task. However, 92.4% of the proposed vessel and 80.6% of the proposed solid core segmentations were labeled as usable in clinical practice by the majority of experts.