Fibroblast growth factor 2 upregulates ecto-5'-nucleotidase and adenosine deaminase via MAPK pathways in cultured rat spinal cord astrocytes.
Ontology highlight
ABSTRACT: Adenosine triphosphate (ATP) and adenosine are neurotransmitters and neuromodulators in the central nervous system. Astrocytes regulate extracellular concentration of purines via ATP release and its metabolisms via ecto-enzymes. The expression and activity of purine metabolic enzymes in astrocytes are increased under pathological conditions. We previously showed that fibroblast growth factor 2 (FGF2) upregulates the expression and activity of the enzymes ecto-5'-nucleotidase (CD73) and adenosine deaminase (ADA). Here, we further demonstrate that this occurs in concentration- and time-dependent manners in cultured rat spinal cord astrocytes and is suppressed by inhibitors of the FGF receptor as well as the mitogen-activated protein kinases (MAPKs). We also found that FGF2 increased the phosphorylation of MAPKs, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK, leading to the increased expression and activity of CD73 and ADA. Our findings reveal the involvement of FGF2/MAPK pathways in the regulation of purine metabolic enzymes in astrocytes. These pathways may contribute to the control of extracellular purine concentrations under physiological and pathological conditions.
SUBMITTER: Eguchi R
PROVIDER: S-EPMC7855126 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA