Unknown

Dataset Information

0

Comprehensive Analysis of C. glutamicum Anaplerotic Deletion Mutants Under Defined d-Glucose Conditions.


ABSTRACT: Wild-type C. glutamicum ATCC 13032 is known to possess two enzymes with anaplerotic (C4-directed) carboxylation activity, namely phosphoenolpyruvate carboxylase (PEPCx) and pyruvate carboxylase (PCx). On the other hand, C3-directed decarboxylation can be catalyzed by the three enzymes phosphoenolpyruvate carboxykinase (PEPCk), oxaloacetate decarboxylase (ODx), and malic enzyme (ME). The resulting high metabolic flexibility at the anaplerotic node compromises the unambigous determination of its carbon and energy flux in C. glutamicum wild type. To circumvent this problem we performed a comprehensive analysis of selected single or double deletion mutants in the anaplerosis of wild-type C. glutamicum under defined d-glucose conditions. By applying well-controlled lab-scale bioreactor experiments in combination with untargeted proteomics, quantitative metabolomics and whole-genome sequencing hitherto unknown, and sometimes counter-intuitive, genotype-phenotype relationships in these mutants could be unraveled. In comparison to the wild type the four mutants C. glutamiucm ?pyc, C. glutamiucm ?pyc ?odx, C. glutamiucm ?ppc ?pyc, and C. glutamiucm ?pck showed lowered specific growth rates and d-glucose uptake rates, underlining the importance of PCx and PEPCk activity for a balanced carbon and energy flux at the anaplerotic node. Most interestingly, the strain C. glutamiucm ?ppc ?pyc could be evolved to grow on d-glucose as the only source of carbon and energy, whereas this combination was previously considered lethal. The prevented anaplerotic carboxylation activity of PEPCx and PCx was found in the evolved strain to be compensated by an up-regulation of the glyoxylate shunt, potentially in combination with the 2-methylcitrate cycle.

SUBMITTER: Kappelmann J 

PROVIDER: S-EPMC7855459 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comprehensive Analysis of <i>C. glutamicum</i> Anaplerotic Deletion Mutants Under Defined d-Glucose Conditions.

Kappelmann Jannick J   Klein Bianca B   Papenfuß Mathias M   Lange Julian J   Blombach Bastian B   Takors Ralf R   Wiechert Wolfgang W   Polen Tino T   Noack Stephan S  

Frontiers in bioengineering and biotechnology 20210120


Wild-type <i>C. glutamicum</i> ATCC 13032 is known to possess two enzymes with anaplerotic (C4-directed) carboxylation activity, namely phosphoenolpyruvate carboxylase (PEPCx) and pyruvate carboxylase (PCx). On the other hand, C3-directed decarboxylation can be catalyzed by the three enzymes phosphoenolpyruvate carboxykinase (PEPCk), oxaloacetate decarboxylase (ODx), and malic enzyme (ME). The resulting high metabolic flexibility at the anaplerotic node compromises the unambigous determination o  ...[more]

Similar Datasets

2021-09-09 | PXD022622 | Pride
| S-EPMC7594717 | biostudies-literature
| S-EPMC2592718 | biostudies-literature
| S-EPMC2519270 | biostudies-literature
| S-EPMC5491440 | biostudies-literature
| S-EPMC5845445 | biostudies-other
| S-EPMC3370556 | biostudies-literature
| S-EPMC5132257 | biostudies-literature
2016-11-01 | GSE73839 | GEO
2020-07-27 | E-MTAB-9371 | biostudies-arrayexpress