Unknown

Dataset Information

0

Protein folding modulates the chemical reactivity of a Gram-positive adhesin.


ABSTRACT: Gram-positive bacteria colonize mucosal tissues, withstanding large mechanical perturbations such as coughing, which generate shear forces that exceed the ability of non-covalent bonds to remain attached. To overcome these challenges, the pathogen Streptococcus pyogenes utilizes the protein Cpa, a pilus tip-end adhesin equipped with a Cys-Gln thioester bond. The reactivity of this bond towards host surface ligands enables covalent anchoring; however, colonization also requires cell migration and spreading over surfaces. The molecular mechanisms underlying these seemingly incompatible requirements remain unknown. Here we demonstrate a magnetic tweezers force spectroscopy assay that resolves the dynamics of the Cpa thioester bond under force. When folded at forces <6 pN, the Cpa thioester bond reacts reversibly with amine ligands, which are common in inflammation sites; however, mechanical unfolding and exposure to forces >6 pN block thioester reformation. We hypothesize that this folding-coupled reactivity switch (termed a smart covalent bond) could allow the adhesin to undergo binding and unbinding to surface ligands under low force and remain covalently attached under mechanical stress.

SUBMITTER: Alonso-Caballero A 

PROVIDER: S-EPMC7858226 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7726212 | biostudies-literature
| S-EPMC5514408 | biostudies-literature
| S-EPMC4172366 | biostudies-literature
| S-EPMC5467162 | biostudies-literature
| S-EPMC9850734 | biostudies-literature
| S-EPMC6731673 | biostudies-literature
| S-EPMC10574546 | biostudies-literature
| S-EPMC5310709 | biostudies-literature
| S-EPMC3468295 | biostudies-literature
| S-EPMC9298188 | biostudies-literature