Project description:ObjectiveSTAT 3 deficiency (autosomal dominant hyper immunoglobulin E syndrome (AD-HIES)) is a primary immunodeficiency disorder with multi-organ involvement caused by dominant negative signal transducer and activator of transcription gene 3 (STAT3) mutations. We sought to describe the gastrointestinal (GI) manifestations of this disease.MethodsSeventy subjects aged five to 60 years with a molecular diagnosis of AD-HIES were evaluated at the National Institutes of Health (NIH). Data collection involved a GI symptom questionnaire and retrospective chart review.ResultsIn our cohort of 70 subjects, we found that 60% had GI symptoms (42/70). The most common manifestations were gastroesophageal reflux disease (GERD) observed in 41%, dysphagia in 31%, and abdominal pain in 24%. The most serious complications were food impaction in 13% and colonic perforation in 6%. Diffuse esophageal wall thickening in 74%, solid stool in the right colon in 50% (12/24), and hiatal hernia in 26% were the most prevalent radiologic findings. Esophagogastroduodenoscopy (EGD) demonstrated esophageal tortuosity in 35% (8/23), esophageal ulceration in 17% (4/23), esophageal strictures requiring dilation in 9% (2/23), and gastric ulceration in 17% (4/23). Esophageal eosinophilic infiltration was an unexpected histologic finding seen in 65% (11/17).ConclusionThe majority of AD-HIES subjects develop GI manifestations as part of their disease. Most notable are the symptoms and radiologic findings of GI dysmotility, as well as significant eosinophilic infiltration, concerning for a secondary eosinophilic esophagitis. These findings suggest that the STAT3 pathway may be implicated in a new mechanism for the pathogenesis of several GI disorders.
Project description:Mutations in STAT3 (signal transducer and activator of transcription 3) have recently been found to cause the hyper-IgE syndrome (HIES) - a rare immunodeficiency syndrome including complex somatic features. We now tested whether STAT3 mutations or single-nucleotide polymorphisms (SNPs) within STAT3 may be responsible for increased IgE levels in asthmatic children. We genotyped DNA samples from 918 individuals of 217 core families by MALDI-TOF mass spectrometry. SNPs were selected from previous reports, by functional relevance and haplotype-tagging capacity. In 24 assays, including the recently described HIES mutations, no variant was detected. In another 27 SNP assays, there was no association of any STAT3 variant with asthma, allergic rhinitis or eczema. In addition, neither total and specific IgE and eosinophil count nor any lung function parameter showed any significant association. When combining high eosinophil counts and high total IgE levels to an HIES-like trait, four SNPs in the 5'-UTR of STAT3 were slightly overtransmitted. A minor fraction of asthmatic children may possibly have an alternate STAT3 promoter architecture influencing joined IgE and eosinophil upregulation. While an overall effect of STAT3 mutations on serum IgE is unlikely in asthma children.
Project description:BackgroundThe hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by infections of the lung and skin, elevated serum IgE, and involvement of the soft and bony tissues. Recently, HIES has been associated with heterozygous dominant-negative mutations in the signal transducer and activator of transcription 3 (STAT3) and severe reductions of T(H)17 cells.ObjectiveTo determine whether there is a correlation between the genotype and the phenotype of patients with HIES and to establish diagnostic criteria to distinguish between STAT3 mutated and STAT3 wild-type patients.MethodsWe collected clinical data, determined T(H)17 cell numbers, and sequenced STAT3 in 100 patients with a strong clinical suspicion of HIES and serum IgE >1000 IU/mL. We explored diagnostic criteria by using a machine-learning approach to identify which features best predict a STAT3 mutation.ResultsIn 64 patients, we identified 31 different STAT3 mutations, 18 of which were novel. These included mutations at splice sites and outside the previously implicated DNA-binding and Src homology 2 domains. A combination of 5 clinical features predicted STAT3 mutations with 85% accuracy. T(H)17 cells were profoundly reduced in patients harboring STAT3 mutations, whereas 10 of 13 patients without mutations had low (<1%) T(H)17 cells but were distinct by markedly reduced IFN-gamma-producing CD4(+)T cells.ConclusionWe propose the following diagnostic guidelines for STAT3-deficient HIES. Possible: IgE >1000IU/mL plus a weighted score of clinical features >30 based on recurrent pneumonia, newborn rash, pathologic bone fractures, characteristic face, and high palate. Probable: These characteristics plus lack of T(H)17 cells or a family history for definitive HIES. Definitive: These characteristics plus a dominant-negative heterozygous mutation in STAT3.
Project description:BackgroundHyper-IgE syndrome (HIES) caused by loss-of-function (LOF) mutations in STAT3 gene (STAT3 LOF HIES) is associated with dental and facial abnormalities in addition to immunological defects. The role of STAT3 in the pathogenesis of the dental/facial features is, however, poorly elucidated.ObjectivesSince mechanism of cellular resorption of mineralized tissues such as bone and teeth are similar, we attempted to study the expression of genes involved in bone homeostasis in STAT3 LOF HIES.MethodsPeripheral blood mononuclear cells from healthy controls (HCs), STAT3 LOF HIES patients, STAT3-/- PC-3 cells and STAT3+/+ LNCaP cells were stimulated with IL-6 and quantitative PCR array was performed to study the relative mRNA expression of 43 pre-selected genes. PCR array finding were further evaluated after stattic induced STAT3 inhibition.ResultsOsteopontin (OPN) gene was seen to be significantly upregulated after IL-6 stimulation in HC (mean fold change 18.6, p?=?0.01) compared with HIES subjects. Inhibition of STAT3 signaling by stattic followed by IL-6 stimulation abrogated the OPN response in HCs suggesting that IL-6-induced STAT3 signaling regulates OPN expression. Bioinformatics analysis predicted the presence of STAT3 response element TTCCAAGAA at position -2005 of the OPN gene.ConclusionRegulation of OPN gene through IL-6-mediated STAT3 activation and its significant dysregulation in STAT3 LOF HIES subjects could make OPN a plausible candidate involved in the pathogenesis of dental/facial manifestations in HIES.
Project description:Most patients with autosomal dominant hyper-IgE syndrome (AD-HIES) carry rare heterozygous STAT3 variants. Only six of the 135 in-frame variants reported have been experimentally shown to be dominant negative (DN), and it has been recently suggested that eight out-of-frame variants operate by haploinsufficiency. We experimentally tested these 143 variants, 7 novel out-of-frame variants found in HIES patients, and other STAT3 variants from the general population. Strikingly, all 15 out-of-frame variants were DN via their encoded (1) truncated proteins, (2) neoproteins generated from a translation reinitiation codon, and (3) isoforms from alternative transcripts or a combination thereof. Moreover, 128 of the 135 in-frame variants (95%) were also DN. The patients carrying the seven non-DN STAT3 in-frame variants have not been studied for other genetic etiologies. Finally, none of the variants from the general population tested, including an out-of-frame variant, were DN. Overall, our findings show that heterozygous STAT3 variants, whether in or out of frame, underlie AD-HIES through negative dominance rather than haploinsufficiency.
Project description:Hyper-IgE syndromes (HIES) are a group of inborn errors of immunity (IEI) caused by monogenic defects such as in the gene STAT3 (STAT3-HIES). Patients suffering from HIES show an increased susceptibility to Staphylococcus aureus (S. aureus) including skin abscesses and pulmonary infections. To assess if the underlying immune defect of STAT3-HIES patients influences the resistance patterns, pathogenicity factors or strain types of S. aureus. We characterized eleven S. aureus strains isolated from STAT3-HIES patients (n = 4) by whole genome sequencing (WGS) to determine presence of resistance and virulence genes. Additionally, we used multi-locus sequence typing (MLST) and protein A (spa) typing to classify these isolates. Bacterial isolates collected from this cohort of STAT3-HIES patients were identified as common spa types in Germany. Only one of the isolates was classified as methicillin-resistant S. aureus (MRSA). For one STAT3 patient WGS illustrated that infection and colonization occurred with different S. aureus isolates rather than one particular clone. The identified S. aureus carriage profile on a molecular level suggests that S. aureus strain type in STAT3-HIES patients is determined by local epidemiology rather than the underlying immune defect highlighting the importance of microbiological assessment prior to antibiotic treatment.
Project description:Hyper-immunoglobulin E syndromes (HIES) including compound primary immunodeficiency and nonimmunological abnormalities are characterized by extremely high serum IgE levels, eosinophilia, eczema, susceptibility to infections, distinctive facial appearance, retention of deciduous teeth, cyst-forming pneumonias, and skeletal abnormalities. Itis reported that some cases of familial HIES are relative to autosomal dominant or recessive inheritance, but most cases are sporadic, and result from mutations in the human signal transducer and activator of transcription 3 (STAT3) gene. In this paper, we firstly report a young man diagnosed of Hyper-IgE syndrome with STAT3 mutation in Mainland China, and investigate the autosomal dominant trait of his family members.
Project description:BackgroundPatients with loss of function signal transducer and activator of transcription 3-related Hyper IgE Syndrome (LOF STAT3 HIES) present with recurrent staphylococcal skin and pulmonary infections along with the elevated serum IgE levels, eczematous rashes, and skeletal and facial abnormalities. Defective STAT3 signaling results in reduced Th17 cells and an impaired IL-17/IL-22 response primarily due to a compromised canonical Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway that involves STAT3 phosphorylation, dimerization, nuclear translocation, and gene transcription. The non-canonical pathway involving unphosphorylated STAT3 and its role in disease pathogenesis, however, is unexplored in HIES.ObjectiveThis study aims to elucidate the role of unphosphorylated STAT3-unphosphorylated NF-κB (uSTAT3-uNF-κB) activation pathway in LOF STAT3 HIES patients.MethodologyThe mRNA expression of downstream molecules of unphosphorylated STAT3-unphosphorylated NF-κB pathway was studied in five LOF STAT3 HIES patients and transfected STAT3 mutants post-IL-6 stimulation. Immunoprecipitation assays were performed to assess the binding of STAT3 and NF-κB to RANTES promoter.ResultsA reduced expression of the downstream signaling molecules of the uSTAT3-uNF-κB complex pathway, viz., RANTES, STAT3, IL-6, IL-8, ICAM1, IL-8, ZFP36L2, CSF1, MRAS, and SOCS3, in LOF STAT3 HIES patients as well as the different STAT3 mutant plasmids was observed. Immunoprecipitation studies showed a reduced interaction of STAT3 and NF-κB to RANTES in HIES patients.ConclusionThe reduced expression of downstream signaling molecules, specially RANTES and STAT3, confirmed the impaired uSTAT3-uNF-κB pathway in STAT3 LOF HIES. Decreased levels of RANTES and STAT3 could be a significant component in the disease pathogenesis of Hyper IgE Syndrome.
Project description:Hyper-IgE syndrome (HIES) is a rare primary immunodeficiency characterized by elevated levels of immunoglobulin E (IgE), eczematous dermatitis, cold abscesses, and recurrent infections of the lung and skin caused by Staphylococcus aureus. The dominant form is characterized by nonimmunologic features including skeletal, connective tissue, and pulmonary abnormalities in addition to recurrent infections and eczema. Omalizumab is a humanized recombinant monoclonal antibody against IgE. Several studies reported clinical improvement with omalizumab in patients with severe atopic eczema with high serum IgE level. We present the case of a 37-year-old male with HIES and cutaneous manifestations, treated with humanized recombinant monoclonal antibodies efalizumab and omalizumab. After therapy for 4 years, we observed diminished eczema and serum IgE levels.