Project description:The role of subclonal TP53 mutations, defined by a variant allele frequency of <20%, has not been addressed in acute myeloid leukemia yet. We, therefore, analyzed their prognostic value in a cohort of 1,537 patients with newly diagnosed disease, prospectively treated within three trials of the "German-Austrian Acute Myeloid Leukemia Study Group". Mutational analysis was performed by targeted deep sequencing and patients with TP53 mutations were categorized by their variant allele frequency into groups with frequencies >40%, 20%-40% and <20%. A total of 108 TP53 mutations were found in 98 patients (6.4%). Among these, 61 patients had variant allele frequencies >40%, 19 had variant allele frequencies between 20%-40% and 18 had frequencies <20%. Compared to specimens with clonal TP53 mutations, those with subclonal ones showed significantly fewer complex karyotypes and chromosomal losses. In either TP53-mutated group, patients experienced significantly fewer complete responses (P<0.001) and had worse overall and event-free survival rates (P<0.0001). In Cox regression analyses adjusting for age, white blood cell count, cytogenetic risk and type of acute myeloid leukemia, the adverse prognostic effect of TP53 mutations remained significant for all TP53-mutated subgroups. These data suggest that subclonal TP53 mutations are a novel prognostic parameter in acute myeloid leukemia and emphasize the usefulness of next-generation sequencing technologies for risk stratification in this disorder. The study was registered at ClinicalTrials.gov with number NCT00146120.
Project description:Mutations of the TP53 gene occur in a subset of patients with acute myeloid leukemia (AML) and confer an exceedingly adverse prognosis. However, whether different types of TP53 mutations exert a uniformly poor outcome has not been investigated yet. Here, we addressed this issue by analyzing data of 1537 patients intensively treated within protocols of the German-Austrian AML study group. We classified TP53 mutations depending on their impact on protein structure and according to the evolutionary action (EAp53) score and the relative fitness score (RFS). In 98/1537 (6.4%) patients, 108 TP53 mutations were detected. While the discrimination depending on the protein structure and the EAp53 score did not show a survival difference, patients with low-risk and high-risk AML-specific RFS showed a different overall survival (OS; median, 12.9 versus 5.5 months, p = 0.017) and event-free survival (EFS; median, 7.3 versus 5.2 months, p = 0.054). In multivariable analyses adjusting for age, gender, white blood cell count, cytogenetic risk, type of AML, and TP53 variant allele frequency, these differences were statistically significant for both OS (HR, 2.14; 95% CI, 1.15-4.0; p = 0.017) and EFS (HR, 1.97; 95% CI, 1.06-3.69; p = 0.033). We conclude that the AML-specific RFS is of prognostic value in patients with TP53-mutated AML and a useful tool for therapeutic decision-making.
Project description:TP53 aberrations are found in approximately 10% of patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) and are considered early driver events affecting leukemia stem cells. In this study, we compared features of a total of 84 patients with these disorders seen at a tertiary cancer center. Clinical and cytogenetic characteristics as well as immunophenotypes of immature blast cells were similar between AML and MDS patients. Median overall survival (OS) was 226 days (95% confidence interval [CI], 131-300) for the entire cohort with an estimated 3-year OS rate of 11% (95% CI, 6-22). OS showed a significant difference between MDS (median, 345 days; 95% CI, 235-590) and AML patients (median, 91 days; 95% CI, 64-226) which is likely due to a different co-mutational pattern as revealed by next-generation sequencing. Transformation of TP53 aberrant MDS occurred in 60.5% of cases and substantially reduced their survival probability. Cox regression analysis revealed treatment class and TP53 variant allele frequency as prognostically relevant parameters but not the TP53-specific prognostic scores EAp53 and RFS. These data emphasize similarities between TP53 aberrant AML and MDS and support previous notions that they should be classified and treated as a distinct disorder.
Project description:Hypomethylating agents are a classical frontline low-intensity therapy for older patients with acute myeloid leukemia. Recently, TP53 gene mutations have been described as a potential predictive biomarker of better outcome in patients treated with a ten-day decitabine regimen., However, functional characteristics of TP53 mutant are heterogeneous, as reflected in multiple functional TP53 classifications and their impact in patients treated with azacitidine is less clear. We analyzed the therapeutic course and outcome of 279 patients treated with azacitidine between 2007 and 2016, prospectively enrolled in our regional healthcare network. By screening 224 of them, we detected TP53 mutations in 55 patients (24.6%), including 53 patients (96.4%) harboring high-risk cytogenetics. The identification of any TP53 mutation was associated with worse overall survival but not with response to azacitidine in the whole cohort and in the subgroup of patients with adverse karyotype. Stratification of patients according to three recent validated functional classifications did not allow the identification of TP53 mutated patients who could benefit from azacitidine. Systematic TP53 mutant classification will deserve further exploration in the setting of patients treated with conventional therapy and in the emerging field of therapies targeting TP53 pathway.
Project description:TP53 is a key tumor suppressor gene with protean functions associated with preservation of genomic balance, including regulation of cellular senescence, apoptotic pathways, metabolism functions, and DNA repair. The vast majority of de novo acute myeloid leukemia (AML) present unaltered TP53 alleles. However, TP53 mutations are frequently detected in AML related to an increased genomic instability, such as therapy-related (t-AML) or AML with myelodysplasia-related changes. Of note, TP53 mutations are associated with complex cytogenetic abnormalities, advanced age, chemoresistance, and poor outcomes. Recent breakthroughs in AML research and the development of targeted drugs directed at specific mutations have led to an explosion of novel treatments with different mechanisms. However, optimal treatment strategy for patients harboring TP53 mutations remains a critical area of unmet need. In this review, we focus on the incidence and clinical significance of TP53 mutations in de novo and t-AML. The influence of these alterations on response and clinical outcomes as well as the current and future therapeutic perspectives for this hardly treatable setting are discussed.
Project description:Prognostic factors associated with chemotherapy outcomes in patients with acute myeloid leukemia (AML) are extensively reported, and one gene whose mutation is recognized as conferring resistance to several newer targeted therapies is protein tyrosine phosphatase non-receptor type 11 (PTPN11). The broader clinical implications of PTPN11 mutations in AML are still not well understood. The objective of this study was to determine which cytogenetic abnormalities and gene mutations co-occur with PTPN11 mutations and how PTPN11 mutations affect outcomes of patients treated with intensive chemotherapy. We studied 1725 patients newly diagnosed with AML (excluding acute promyelocytic leukemia) enrolled onto the Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology trials. In 140 PTPN11-mutated patient samples, PTPN11 most commonly co-occurred with mutations in NPM1, DNMT3A, and TET2. PTPN11 mutations were relatively common in patients with an inv(3)(q21q26)/t(3;3)(q21;q26) and a normal karyotype but were very rare in patients with typical complex karyotype and core-binding factor AML. Mutations in the N-terminal SH2 domain of PTPN11 were associated with a higher early death rate than those in the phosphatase domain. PTPN11 mutations did not affect outcomes of NPM1-mutated patients, but these patients were less likely to have co-occurring kinase mutations (ie, FLT3-ITD), suggesting activation of overlapping signaling pathways. However, in AML patients with wild-type NPM1, PTPN11 mutations were associated with adverse patient outcomes, providing a rationale to study the biology and treatment approaches in this molecular group. This trial was registered at www.clinicaltrials.gov as #NCT00048958 (CALGB 8461), #NCT00899223 (CALGB 9665), and #NCT00900224 (CALGB 20202).
Project description:BackgroundDNMT3A mutations occur in approximately 20% of AML cases and are associated with changes in DNA methylation. CDKN2B plays an important role in the regulation of hematopoietic progenitor cells and DNMT3A mutation is associated with CDKN2B promoter methylation. We analyzed the characteristics of DNMT3A mutations including their clinical significance in AML and their influence on promoter methylation and CDKN2B expression.MethodsA total of 142 adults, recently diagnosed with de novo AML, were enrolled in the study. Mutations in DNMT3A, CEBPA, and NPM1 were analyzed by bidirectional Sanger sequencing. We evaluated CDKN2B promoter methylation and expression using pyrosequencing and RT-qPCR.ResultsWe identified DNMT3A mutations in 19.7% (N=28) of enrolled patients with AML, which increased to 29.5% when analysis was restricted to cytogenetically normal-AML. Mutations were located on exons from 8-23, and the majority, including R882, were found to be present on exon 23. We also identified a novel frameshift mutation, c.1590delC, in AML with biallelic mutation of CEBPA. There was no significant difference in CDKN2B promoter methylation according to the presence or type of DNMT3A mutations. CDKN2B expression inversely correlated with CDKN2B promoter methylation and was significantly higher in AML with R882H mutation in DNMT3A. We demonstrated that DNMT3A mutation was associated with poor AML outcomes, especially in cytogenetically normal-AML. The DNMT3A mutation remained as the independent unfavorable prognostic factor after multivariate analysis.ConclusionWe characterized DNMT3A mutations in AML and revealed the association between the DNMT3A mutation and CDKN2B expression and clinical outcome.
Project description:In recent years, it has been reported that the frequency of DNA-methylation regulatory gene mutations - mutations of the genes that regulate gene expression through DNA methylation - is high in acute myeloid leukemia. The objective of the present study was to elucidate the clinical characteristics and prognosis of acute myeloid leukemia with associated DNA-methylation regulatory gene mutation. We studied 308 patients with acute myeloid leukemia. DNA-methylation regulatory gene mutations were observed in 135 of the 308 cases (43.8%). Acute myeloid leukemia associated with a DNA-methylation regulatory gene mutation was more frequent in older patients (P<0.0001) and in patients with intermediate cytogenetic risk (P<0.0001) accompanied by a high white blood cell count (P=0.0032). DNA-methylation regulatory gene mutation was an unfavorable prognostic factor for overall survival in the whole cohort (P=0.0018), in patients aged ≤70 years, in patients with intermediate cytogenetic risk, and in FLT3-ITD-negative patients (P=0.0409). Among the patients with DNA-methylation regulatory gene mutations, 26.7% were found to have two or more such mutations and prognosis worsened with increasing number of mutations. In multivariate analysis DNA-methylation regulatory gene mutation was an independent unfavorable prognostic factor for overall survival (P=0.0424). However, patients with a DNA-methylation regulatory gene mutation who underwent allogeneic stem cell transplantation in first remission had a significantly better prognosis than those who did not undergo such transplantation (P=0.0254). Our study establishes that DNA-methylation regulatory gene mutation is an important unfavorable prognostic factor in acute myeloid leukemia.
Project description:TP53 is a key tumor suppressor gene that plays an important role in regulating apoptosis, senescence, and DNA damage repair in response to cellular stress. Although somewhat rare, TP53-mutated AML has been identified as an important molecular subgroup with a prognosis that is arguably the worst of any. Survival beyond one year is rare after induction chemotherapy with or without consolidative allogeneic stem cell transplant. Although response rates have been improved with hypomethylating agents, outcomes remain particularly poor due to short response duration. Improvements in our understanding of AML genetics and biology have led to a surge in novel treatment options, though the clinical applicability of these agents in TP53-mutated disease remains largely unknown. This review will focus on the epidemiology, molecular characteristics, and clinical significance of TP53 mutations in AML as well as emerging treatment options that are currently being studied.