Prevalence of pharmacogenomic variants in 100 pharmacogenes among Southeast Asian populations under the collaboration of the Southeast Asian Pharmacogenomics Research Network (SEAPharm).
Ontology highlight
ABSTRACT: Pharmacogenomics can enhance the outcome of treatment by adopting pharmacogenomic testing to maximize drug efficacy and lower the risk of serious adverse events. Next-generation sequencing (NGS) is a cost-effective technology for genotyping several pharmacogenomic loci at once, thereby increasing publicly available data. A panel of 100 pharmacogenes among Southeast Asian (SEA) populations was resequenced using the NGS platform under the collaboration of the Southeast Asian Pharmacogenomics Research Network (SEAPharm). Here, we present the frequencies of pharmacogenomic variants and the comparison of these pharmacogenomic variants among different SEA populations and other populations used as controls. We investigated the different types of pharmacogenomic variants, especially those that may have a functional impact. Our results provide substantial genetic variations at 100 pharmacogenomic loci among SEA populations that may contribute to interpopulation variability in drug response phenotypes. Correspondingly, this study provides basic information for further pharmacogenomic investigations in SEA populations.
Project description:Genetic variations have an established impact on the pharmacological response. Investigating this variation resulted in a compilation of variants in "pharmacogenes". The emergence of next-generation sequencing facilitated large-scale pharmacogenomic studies and exhibited the extensive variability of pharmacogenes. Some rare and population-specific variants proved to be actionable, suggesting the significance of population pharmacogenomic research. A profound gap exists in the knowledge of pharmacogenomic variants enriched in some populations, including the United Arab Emirates (UAE). The current study aims to explore the landscape of variations in relevant pharmacogenes among healthy Emiratis. Through the resequencing of 100 pharmacogenes for 100 healthy Emiratis, we identified 1243 variants, of which 63% are rare (minor allele frequency???0.01), and 30% were unique. Filtering the variants according to Pharmacogenomics Knowledge Base (PharmGKB) annotations identified 27 diplotypes and 26 variants with an evident clinical relevance. Comparison with global data illustrated a significant deviation of allele frequencies in the UAE population. Understudied populations display a distinct allelic architecture and various rare and unique variants. We underscored pharmacogenes with the highest variation frequencies and provided investigators with a list of candidate genes for future studies. Population pharmacogenomic studies are imperative during the pursuit of global pharmacogenomics implementation.
Project description:Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies.
Project description:Objectives Reliable identification of population-specific variants is important for building the single nucleotide polymorphism (SNP) profile. In this study, genomic variation using allele frequency differences of pharmacologically important genes for Gujarati Indians in Houston (GIH) and Indian Telugu in the U.K. (ITU) from the 1000 Genomes Project vis-à-vis global population data was studied to understand its role in drug response. Methods Joint genotyping approach was used to derive variants of GIH and ITU independently. SNPs of both these populations with significant allele frequency variation (minor allele frequency ≥ 0.05) with super-populations from the 1000 Genomes Project and gnomAD based on Chi-square distribution with p-value of ≤ 0.05 and Bonferroni’s multiple adjustment tests were identified. Population stratification and fixation index analysis was carried out to understand genetic differentiation. Functional annotation of variants was carried out using SnpEff, VEP and CADD score. Results Population stratification of VIP genes revealed four clusters viz., single cluster of GIH and ITU, one cluster each of East Asian, European, African populations and Admixed American was found to be admixed. A total of 13 SNPs belonging to ten pharmacogenes were identified to have significant allele frequency variation in both GIH and ITU populations as compared to one or more super-populations. These SNPs belong to VKORC1 (rs17708472, rs2359612, rs8050894) involved in Vitamin K cycle, cytochrome P450 isoforms CYP2C9 (rs1057910), CYP2B6 (rs3211371), CYP2A2 (rs4646425) and CYP2A4 (rs4646440); ATP-binding cassette (ABC) transporter ABCB1 (rs12720067), DPYD1 (rs12119882, rs56160474) involved in pyrimidine metabolism, methyltransferase COMT (rs9332377) and transcriptional factor NR1I2 (rs6785049). SNPs rs1544410 (VDR), rs2725264 (ABCG2), rs5215 and rs5219 (KCNJ11) share high fixation index (≥ 0.5) with either EAS/AFR populations. Missense variants rs1057910 (CYP2C9), rs1801028 (DRD2) and rs1138272 (GSTP1), rs116855232 (NUDT15); intronic variants rs1131341 (NQO1) and rs115349832 (DPYD) are identified to be ‘deleterious’. Conclusions Analysis of SNPs pertaining to pharmacogenes in GIH and ITU populations using population structure, fixation index and allele frequency variation provides a premise for understanding the role of genetic diversity in drug response in Asian Indians.
Project description:The great ethnolinguistic diversity found today in mainland Southeast Asia (MSEA) reflects multiple migration waves of people in the past. Maritime trading between MSEA and India was established at the latest 300 BCE, and the formation of early states in Southeast Asia during the first millennium CE was strongly influenced by Indian culture, a cultural influence that is still prominent today. Several ancient Indian-influenced states were located in present-day Thailand, and various populations in the country are likely to be descendants of people from those states. To systematically explore Indian genetic heritage in MSEA populations, we generated genome-wide SNP data (using the Affymetrix Human Origins array) for 119 present-day individuals belonging to 10 ethnic groups from Thailand and co-analyzed them with published data using PCA, ADMIXTURE, and methods relying on f-statistics and on autosomal haplotypes. We found low levels of South Asian admixture in various MSEA populations for whom there is evidence of historical connections with the ancient Indian-influenced states but failed to find this genetic component in present-day hunter-gatherer groups and relatively isolated groups from the highlands of Northern Thailand. The results suggest that migration of Indian populations to MSEA may have been responsible for the spread of Indian culture in the region. Our results also support close genetic affinity between Kra-Dai-speaking (also known as Tai-Kadai) and Austronesian-speaking populations, which fits a linguistic hypothesis suggesting cladality of the two language families.
Project description:In advanced cancer, pain is a poor prognostic factor, significantly impacting patients' quality of life. It has been shown that up to 30% of cancer patients in Southeast Asian countries may receive inadequate analgesia from opioid therapy. This significant under-management of cancer pain is largely due to the inter-individual variability in opioid dosage and relative efficacy of available opioids, leading to unpredictable clinical responses to opioid treatment. Single nucleotide polymorphisms (SNPs) cause the variability in opioid treatment outcomes, yet their association in Asian populations remains unclear. Therefore, this review aimed to evaluate the association of SNPs with variability in opioid treatment responses in Asian populations. A literature search was conducted in Medline and Embase databases and included primary studies investigating the association of SNPs in opioid treatment outcomes, namely pharmacokinetics, opioid dose requirements, and pain control among Asian cancer patients. The results show that CYP2D6*10 has the most clinical relevance in tramadol treatment. Other SNPs such as rs7439366 (UGT2B7), rs1641025 (ABAT) and rs1718125 (P2RX7) though significant have limited pharmacogenetic implications due to insufficient evidence. OPRM1 rs1799971, COMT rs4680 and ABCB1 (rs1045642, rs1128503, and rs2032582) need to be further explored in future for relevance in Asian populations.
Project description:The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser.
Project description:BACKGROUND:Various endosymbiotic bacteria, including Wolbachia of the Alphaproteobacteria, infect a wide range of insects and are capable of inducing reproductive abnormalities to their hosts such as cytoplasmic incompatibility (CI), parthenogenesis, feminization and male-killing. These extended phenotypes can be potentially exploited in enhancing environmentally friendly methods, such as the sterile insect technique (SIT), for controlling natural populations of agricultural pests. The goal of the present study is to investigate the presence of Wolbachia, Spiroplasma, Arsenophonus and Cardinium among Bactrocera, Dacus and Zeugodacus flies of Southeast Asian populations, and to genotype any detected Wolbachia strains. RESULTS:A specific 16S rRNA PCR assay was used to investigate the presence of reproductive parasites in natural populations of nine different tephritid species originating from three Asian countries, Bangladesh, China and India. Wolbachia infections were identified in Bactrocera dorsalis, B. correcta, B. scutellaris and B. zonata, with 12.2-42.9% occurrence, Entomoplasmatales in B. dorsalis, B. correcta, B. scutellaris, B. zonata, Zeugodacus cucurbitae and Z. tau (0.8-14.3%) and Cardinium in B. dorsalis and Z. tau (0.9-5.8%), while none of the species tested, harbored infections with Arsenophonus. Infected populations showed a medium (between 10 and 90%) or low (<?10%) prevalence, ranging from 3 to 80% for Wolbachia, 2 to 33% for Entomoplasmatales and 5 to 45% for Cardinium. Wolbachia and Entomoplasmatales infections were found both in tropical and subtropical populations, the former mostly in India and the latter in various regions of India and Bangladesh. Cardinium infections were identified in both countries but only in subtropical populations. Phylogenetic analysis revealed the presence of Wolbachia with some strains belonging either to supergroup B or supergroup A. Sequence analysis revealed deletions of variable length and nucleotide variation in three Wolbachia genes. Spiroplasma strains were characterized as citri-chrysopicola-mirum and ixodetis strains while the remaining Entomoplasmatales to the Mycoides-Entomoplasmataceae clade. Cardinium strains were characterized as group A, similar to strains infecting Encarsia pergandiella. CONCLUSIONS:Our results indicated that in the Southeast natural populations examined, supergroup A Wolbachia strain infections were the most common, followed by Entomoplasmatales and Cardinium. In terms of diversity, most strains of each bacterial genus detected clustered in a common group. Interestingly, the deletions detected in three Wolbachia genes were either new or similar to those of previously identified pseudogenes that were integrated in the host genome indicating putative horizontal gene transfer events in B. dorsalis, B. correcta and B. zonata.
Project description:BackgroundART in the developing world has moved to a new era with the WHO recommendation to test and immediately treat HIV-positive individuals. A high frequency of pretreatment HIV drug resistance (PDR) can compromise ART efficacy. Our study presents updated estimates of PDR in seven countries from West Africa (Burkina Faso, Cameroon, Côte d'Ivoire, Mali and Togo) and Southeast Asia (Thailand and Vietnam).MethodsEligible study participants were adult ART initiators, recruited from December 2015 to November 2016 in major ART clinics in each country. HIV drug resistance (HIVDR) tests were performed for all specimens and interpretation was done using the Stanford algorithm.ResultsOverall, 1153 participants were recruited and 1020 nt sequences were generated. PDR frequency among all initiators was 15.9% (95% CI: 13.8%-18.3%) overall, ranging from 9.6% and 10.2% in Burkina Faso and Thailand, respectively, 14.7% in Vietnam, 15.4% in Mali, 16.5% in Côte d'Ivoire and 19.3% in Cameroon, to 24.6% in Togo. The prevalence of NNRTI resistance mutations was 12%; NRTI and PI PDR prevalences were 4% and 3%, respectively.ConclusionsOur study shows that in most countries PDR exceeded 10%, warranting the conduct of nationally representative surveys to confirm this trend. In the meantime, actions to prevent drug resistance, including transition from NNRTIs to more robust drug classes should be urgently implemented.
Project description:The Singapore Integrative Omics Study provides valuable insights on establishing population reference measurement in 364 Chinese, Malay, and Indian individuals. These measurements include >?2.5 millions genetic variants, 21,649 transcripts expression, 282 lipid species quantification, and 284 clinical, lifestyle, and dietary variables. This concept paper introduces the depth of the data resource, and investigates the extent of ethnic variation at these omics and non-omics biomarkers. It is evident that there are specific biomarkers in each of these platforms to differentiate between the ethnicities, and intra-population analyses suggest that Chinese and Indians are the most biologically homogeneous and heterogeneous, respectively, of the three groups. Consistent patterns of correlations between lipid species also suggest the possibility of lipid tagging to simplify future lipidomics assays. The Singapore Integrative Omics Study is expected to allow the characterization of intra-omic and inter-omic correlations within and across all three ethnic groups through a systems biology approach.The Singapore Genome Variation projects characterized the genetics of Singapore's Chinese, Malay, and Indian populations. The Singapore Integrative Omics Study introduced here goes further in providing multi-omic measurements in individuals from these populations, including genetic, transcriptome, lipidome, and lifestyle data, and will facilitate the study of common diseases in Asian communities.
Project description:Serum pepsinogens have been widely acknowledged as gastric mucosal biomarkers; however, a multicountry report on the benefits of pepsinogens as biomarkers has not yet been published. We analyzed 1,206 sera and gastric mucosal samples collected from Bangladesh, Bhutan, Indonesia, Myanmar, Nepal and Thailand then assessed the association between gastric mucosal changes and Helicobacter pylori infection. The new cutoff values for serum pepsinogen values were evaluated using a receiver operating characteristic analysis. The participants with H. pylori infection had significantly lower pepsinogen I and higher pepsinogen II values, but a lower pepsinogen I/II ratio than participants without the infection (all P < .001). The pepsinogen I and pepsinogen I/II values were significantly higher and lower, respectively, in individuals with atrophic gastritis than in those without (both P < .001). Among uninfected individuals, only the pepsinogen I/II ratio was significantly lower in atrophic individuals. Pepsinogen I/II ratio also were significantly different between disease among H. pylori-positive and H. pylori-negative individuals, suggesting the pepsinogen I/II ratio is a robust biomarker for determining both chronic and atrophic gastritis. The cutoffs for detecting chronic and atrophic gastritis for the pepsinogen I/II ratio were 4.65 and 4.95, respectively. In conclusion, pepsinogen levels are useful biomarker for both chronic gastritis and atrophic gastritis, but they should be used with caution. Population-based validation is necessary to determine the best cutoff values. Among all pepsinogen values, the pepsinogen I/II ratio was the most reliable gastric mucosal-change biomarker.