Unknown

Dataset Information

0

Co-crystal structures of HIV TAR RNA bound to lab-evolved proteins show key roles for arginine relevant to the design of cyclic peptide TAR inhibitors.


ABSTRACT: RNA-protein interfaces control key replication events during the HIV-1 life cycle. The viral trans-activator of transcription (Tat) protein uses an archetypal arginine-rich motif (ARM) to recruit the host positive transcription elongation factor b (pTEFb) complex onto the viral trans-activation response (TAR) RNA, leading to activation of HIV transcription. Efforts to block this interaction have stimulated production of biologics designed to disrupt this essential RNA-protein interface. Here, we present four co-crystal structures of lab-evolved TAR-binding proteins (TBPs) in complex with HIV-1 TAR. Our results reveal that high-affinity binding requires a distinct sequence and spacing of arginines within a specific β2-β3 hairpin loop that arose during selection. Although loops with as many as five arginines were analyzed, only three arginines could bind simultaneously with major-groove guanines. Amino acids that promote backbone interactions within the β2-β3 loop were also observed to be important for high-affinity interactions. Based on structural and affinity analyses, we designed two cyclic peptide mimics of the TAR-binding β2-β3 loop sequences present in two high-affinity TBPs (KD values of 4.2 ± 0.3 and 3.0 ± 0.3 nm). Our efforts yielded low-molecular weight compounds that bind TAR with low micromolar affinity (KD values ranging from 3.6 to 22 μm). Significantly, one cyclic compound within this series blocked binding of the Tat-ARM peptide to TAR in solution assays, whereas its linear counterpart did not. Overall, this work provides insight into protein-mediated TAR recognition and lays the ground for the development of cyclic peptide inhibitors of a vital HIV-1 RNA-protein interaction.

SUBMITTER: Chavali SS 

PROVIDER: S-EPMC7864049 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6061845 | biostudies-literature
| S-EPMC5199234 | biostudies-literature
| S-EPMC1220297 | biostudies-other
| S-EPMC8579469 | biostudies-literature
| S-SCDT-EMM-2021-14499P | biostudies-other
| S-EPMC2533785 | biostudies-literature
| S-EPMC3940607 | biostudies-literature
| S-EPMC5343963 | biostudies-literature
2020-01-10 | PXD013326 | Pride
| S-EPMC3660729 | biostudies-literature