Project description:We report a case of a kidney transplant recipient who presented with acute kidney injury and nephrotic-range proteinuria in a context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Kidney biopsy revealed collapsing glomerulopathy. Droplet-based digital polymerase chain reaction did not detect the presence of SARS-CoV-2 RNA in the biopsy fragment, and the virus was barely detectable in plasma at the time of the biopsy. SARS-CoV-2 RNAemia peaked several days later, followed by a seroconversion despite the absence of circulating CD19-positive lymphocytes at admission due to rituximab-based treatment of antibody-mediated rejection 3 months earlier. Genotyping for the 2 risk alleles of the apolipoprotein L1 (APOL1) gene revealed that the donor carried the low-risk G0/G2 genotype. This case illustrates that coronavirus disease 2019 infection may promote a collapsing glomerulopathy in kidney allografts with a low-risk APOL1 genotype in the absence of detectable SARS-CoV-2 RNA in the kidney and that podocyte injury may precede SARS-CoV-2 RNAemia.
Project description:Collapsing glomerulopathy is a histologically distinct variant of focal and segmental glomerulosclerosis that presents with heavy proteinuria and portends a poor prognosis. Collapsing glomerulopathy can be triggered by viral infections such as HIV or SARS-CoV-2. Transcriptional profiling of collapsing glomerulopathy lesions is difficult since only a few glomeruli may exhibit this histology within a kidney biopsy and the mechanisms driving this heterogeneity are unknown. Therefore, we used recently developed digital spatial profiling (DSP) technology which permits quantification of mRNA at the level of individual glomeruli. Using DSP, we profiled 1,852 transcripts in glomeruli isolated from formalin fixed paraffin embedded sections from HIV or SARS-CoV-2-infected patients with biopsy-confirmed collapsing glomerulopathy and used normal biopsy sections as controls. Even though glomeruli with collapsing features appeared histologically similar across both groups of patients by light microscopy, the increased resolution of DSP uncovered intra- and inter-patient heterogeneity in glomerular transcriptional profiles that were missed in early laser capture microdissection studies of pooled glomeruli. Focused validation using immunohistochemistry and RNA in situ hybridization showed good concordance with DSP results. Thus, DSP represents a powerful method to dissect transcriptional programs of pathologically discernible kidney lesions.
Project description:Collapsing focal segmental glomerulosclerosis (cFSGS) in the native kidney is associated with heavy proteinuria and accelerated renal failure. However, cFSGS in the renal allograft is less well characterized. Here we report clinico-pathologic features and APOL1 donor risk genotypes in 38 patients with de novo post-kidney transplant cFSGS. Recipients were 34% female and 26% African American. Concurrent viral infections and acute vaso-occlusion (including thrombotic microangiopathy, cortical necrosis, atheroembolization, and cardiac arrest with contralateral graft thrombosis) were present in 13% and 29% of recipients, respectively. Notably, 61% of patients had concurrent acute rejection and 47% received grafts from African American donors, of which 53% carried APOL1 high-risk genotypes. These frequencies of acute rejection and grafts from African American donors were significantly higher than in our general transplant population (35% and 16%, respectively). Patients had a median serum creatinine of 5.4 mg/dl, urine protein/creatinine 3.5 g/g, and 18% had nephrotic syndrome. Graft failure occurred in 63% of patients at an average of eighteen months post-index biopsy. By univariate analysis, donor APOL1 high-risk genotypes, post-transplant time, nephrotic syndrome, and chronic histologic changes were associated with inferior graft survival while acute vaso-occlusion was associated with superior graft survival. Donor APOL1 high-risk genotypes independently predicted poor outcome. Compared to native kidney cFSGS, post-transplant cFSGS had more acute vaso-occlusion but less proteinuria. Thus, de novo cFSGS is associated with variable proteinuria and poor prognosis with potential predisposing factors of African American donor, acute rejection, viral infection and acute vaso-occlusion. Additionally, donor APOL1 high-risk genotypes are associated with higher incidence and worse graft survival.
Project description:In this study, we analyze the Genetic Analysis Workshop 18 data to identify the genes and underlying single-nucleotide polymorphisms on 11 chromosomes that exhibit significant association with systolic blood pressure. We propose a novel family-based method for rare-variant association detection based on the hierarchical Bayesian framework. The method controls spurious associations caused by population stratification, and improves the statistical power to detect not only individual rare variants, but also genes with either continuous or binary outcomes. Our method utilizes nuclear family information, and takes into account the effects of all single-nucleotide polymorphisms in a gene, using a hierarchical model. When we apply this method to the genome-wide Genetic Analysis Workshop 18 data, several genes and single-nucleotide polymorphisms are identified as potentially related to systolic blood pressure.