Facile Synthesis of Spherical TiO2 Hollow Nanospheres with a Diameter of 150 nm for High-Performance Mesoporous Perovskite Solar Cells.
Ontology highlight
ABSTRACT: The electron transport layer (ETL) of organic-inorganic perovskite solar cells plays an important role in their power conversion efficiency (PCE). In this study, TiO2 hollow nanospheres with a diameter of 150 nm were prepared by a facile synthesis method. The synthesized TiO2 hollow nanospheres had a highly porous structure with a surface area of 85.23 m2 g-1, which is significantly higher than commercial TiO2 (P25) (54.32 m2 g-1), indicating that they can form an ideal mesoporous layer for Formamidinium iodide-based perovskite solar cells (PSCs). In addition, the nanospheres achieved a remarkable perovskite performance, and the average PCE increased from 12.87% to 14.27% with a short circuit current density of 22.36 mAcm-2, an open voltage of 0.95 V, and a fill factor of 0.65. The scanning electron microscopy images revealed that the enhanced PCE could be due to the improved carrier collection and transport properties of the nanosphere, which enabled efficient filtration of perovskite into the TiO2 mesoporous ETL. The TiO2 hollow nanospheres fabricated in this study show high potential as a high-quality ETL material for efficient (FAPbI3)0.97(MAPbBr3)0.03-based PSCs.
SUBMITTER: Quy HV
PROVIDER: S-EPMC7866397 | biostudies-literature | 2021 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA