Project description:Cardiovascular diseases in children comprise a large public health problem. The major goals of paediatric cardiologists and paediatric cardiovascular researchers are to identify the cause(s) of these diseases to improve treatment and preventive protocols. Recent studies show the involvement of microRNAs (miRs) in different aspects of heart development, function, and disease. Therefore, miR-based research in paediatric cardiovascular disorders is crucial for a better understanding of the underlying pathogenesis of the disease, and unravelling novel, efficient, preventive, and therapeutic means. The ultimate goal of such research is to secure normal cardiac development and hence decrease disabilities, improve clinical outcomes, and decrease the morbidity and mortality among children. This review focuses on the role of miRs in different paediatric cardiovascular conditions in an effort to encourage miR-based research in paediatric cardiovascular disorders.
Project description:Speech requires precise motor control and rapid sequencing of highly complex vocal musculature. Despite its complexity, most people produce spoken language effortlessly. This is due to activity in distributed neuronal circuitry including cortico-striato-thalamic loops that control speech-motor output. Understanding the neuro-genetic mechanisms involved in the correct development and function of these pathways will shed light on how humans can effortlessly and innately use spoken language and help to elucidate what goes wrong in speech-language disorders. FOXP2 was the first single gene identified to cause speech and language disorder. Individuals with FOXP2 mutations display a severe speech deficit that includes receptive and expressive language impairments. The neuro-molecular mechanisms controlled by FOXP2 will give insight into our capacity for speech-motor control, but are only beginning to be unraveled. Recently FOXP2 was found to regulate genes involved in retinoic acid (RA) signaling and to modify the cellular response to RA, a key regulator of brain development. Here we explore evidence that FOXP2 and RA function in overlapping pathways. We summate evidence at molecular, cellular, and behavioral levels that suggest an interplay between FOXP2 and RA that may be important for fine motor control and speech-motor output. We propose RA signaling is an exciting new angle from which to investigate how neuro-genetic mechanisms can contribute to the (spoken) language ready brain.
Project description:Due to the aging of the population and despite the enormous scientific effort, Alzheimer's disease remains one of the biggest medical and pharmaceutical challenges in current medicine. Novel insights highlight the importance of neuroinflammation as an undeniable player in the onset and progression of Alzheimer's disease. Tumor necrosis factor is a master inflammatory cytokine that signals via tumor necrosis factor receptor 1 and tumor necrosis factor receptor 2, but that also regulates several brain functions in health and disease. However, clinical trials investigating drugs that interfere with the tumor necrosis factor pathway in Alzheimer's disease led to inconclusive results, partially because not only the pro-inflammatory tumor necrosis factor/tumor necrosis factor receptor 1, but also the beneficial tumor necrosis factor/tumor necrosis factor receptor 2 signaling was antagonized in these trials. We recently found that tumor necrosis factor is the main upregulated cytokine in the choroid plexus of Alzheimer's disease patients, signaling via tumor necrosis factor receptor 1. In agreement with this, choroidal tumor necrosis factor/tumor necrosis factor receptor 1 signaling was also upregulated in different Alzheimer's disease mouse models. Interestingly, both genetic and nanobody-based pharmacological blockage of tumor necrosis factor receptor 1 signaling was accompanied by favorable effects on Alzheimer's disease-associated inflammation, choroidal morphology and cognitive functioning. Here, we briefly summarize the detrimental effects that can be mediated by tumor necrosis factor/tumor necrosis factor receptor 1 signaling in (early) Alzheimer's disease, and the consequences this might have on the disease progression. As the main hypothesis in Alzheimer's disease clinical trials is still based on the amyloid beta-cascade, the importance of Alzheimer's disease-associated neuroinflammation urge the development of novel therapeutic strategies that might be effective in the early stages of Alzheimer's disease and prevent the irreversible neurodegeneration and resulting memory decline.
Project description:Puzzle pieces have become ubiquitous symbols for autism. However, puzzle-piece imagery stirs debate between those who support and those who object to its use because they believe puzzle-piece imagery evokes negative associations. Our study empirically investigated whether puzzle pieces evoke negative associations in the general public. Participants' ( N?=?400) implicit negative associations were measured with an Implicit Association Task, which is a speeded categorization task, and participants' explicit associations were measured with an Explicit Association Task, which is a standard task for assessing consumers' explicit associations with brands (and images of those brands). Puzzle pieces, both those used as autism logos and those used more generically, evoked negative implicit associations ( t(399)?=?-5.357, p?<?0.001) and negative explicit associations ( z?=?4.693, p?<?0.001, d?=?0.491). Participants explicitly associated puzzle pieces, even generic puzzle pieces, with incompleteness, imperfection, and oddity. Our results bear public policy implications. If an organization's intention for using puzzle-piece imagery is to evoke negative associations, our results suggest the organization's use of puzzle-piece imagery is apt. However, if the organization's intention is to evoke positive associations, our results suggest that puzzle-piece imagery should probably be avoided.
Project description:COVID-19 is a disease characterized by a strong inflammatory response in severe cases, which fails to respond to corticosteroid therapy. In the context of the current COVID-19 outbreak and the critical information gaps regarding the disease, several different therapeutic strategies are under investigation, including the use of stem cells. In the present manuscript, we provide an analysis of the rationale underlying the application of stem cells to manage COVID-19, and also a comprehensive compendium of the 69 clinical trials underway worldwide aiming to investigate the application of stem cells to treat COVID-19. Even though data are still scarce, it is already possible to observe the protagonism of China in testing mesenchymal stem cells (MSCs) for COVID-19. Furthermore, it is possible to determine that current efforts focus on the use of multiple infusions of high numbers of stem cells and derived products, as well as to acknowledge the positive results obtained by independent groups who publicized the therapeutic benefits provided by such therapies in 51 COVID-19 patients. In such a rapid-paced field, up-to-date systematic studies and meta-analysis will aid the scientific community to separate hype from hope and offer an unbiased position to the society and governments.
Project description:The tyrosine hydroxylase (TH) gene encodes a monoxygenase that catalyzes the rate limiting step in dopamine biosynthesis. A hallmark of Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra. Consistent with the essential role of TH in dopamine homeostasis, missense mutations in both alleles of TH have been associated with severe Parkinsonism-related phenotypes including infantile Parkinsonism. It has been speculated for a long time that genetic variants in the TH gene modify adult-onset PD susceptibility but the answer has not been clear. Genetic variants (both sequence variations and structural variations) can be classified into three categories based on their relative frequency in population: common variants (polymorphisms), rare variants and mutations. Each of these factors has a different mode in influencing the genetic risk and often requires different approaches to decipher their contributions to the disease. In the past few years, the revolutionary advances in genomic technology have allowed systematic evaluations of these genetic variants in PD, such as the genome-wide association study (GWAS, to survey common variants), copy number variation analysis (to detect structural variations), and massive parallel next generation sequencing (to detect rare variants and mutations). In this review, we have summarized the latest evidence on TH genetic variants in PD, including our ongoing effort of using whole exome sequencing to search for rare variants in PD patients.
Project description:BackgroundMolecular signaling events associated with the necroinflammatory changes in nonalcoholic steatohepatitis (NASH) are not well understood.AimsTo understand the molecular basis of NASH, we evaluated reversible phosphorylation events in hepatic tissue derived from Class III obese subjects by phosphoproteomic means with the aim of highlighting key regulatory pathways that distinguish NASH from non-alcoholic fatty liver disease (also known as simple steatosis; SS).Materials & methodsClass III obese subjects undergoing bariatric surgery underwent liver biopsy (eight normal patients, eight with simple steatosis, and eight NASH patients). Our strategy was unbiased, comparing global differences in liver protein reversible phosphorylation events across the 24 subjects.ResultsOf the 3078 phosphorylation sites assigned (2465 phosphoserine, 445 phosphothreonine, 165 phosphotyrosine), 53 were altered by a factor of 2 among cohorts, and of those, 12 were significantly increased or decreased by ANOVA (P < 0.05).DiscussionStatistical analyses of canonical signaling pathways identified carbohydrate metabolism and RNA post-transcriptional modification among the most over-represented networks.ConclusionCollectively, these results raise the possibility of abnormalities in carbohydrate metabolism as an important trigger for the development of NASH, in parallel with already established abnormalities in lipid metabolism.
Project description:Octopuses have large brains and exhibit complex behaviors, but relatively little is known about their cognitive abilities. Here we present data from a five-level learning and problem-solving experiment. Seven octopuses (Octopus vulgaris) were first trained to open an L shaped container to retrieve food (level 0). After learning the initial task all animals followed the same experimental protocol, first they had to retrieve this L shaped container, presented at the same orientation, through a tight fitting hole in a clear Perspex partition (level 1). This required the octopuses to perform both pull and release or push actions. After reaching criterion the animals advanced to the next stage of the test, which would be a different consistent orientation of the object (level 2) at the start of the trial, an opaque barrier (level 3) or a random orientation of the object (level 4). All octopuses were successful in reaching criterion in all levels of the task. At the onset of each new level the performance of the animals dropped, shown as an increase in working times. However, they adapted quickly so that overall working times were not significantly different between levels. Our findings indicate that octopuses show behavioral flexibility by quickly adapting to a change in a task. This can be compared to tests in other species where subjects had to conduct actions comprised of a set of motor actions that cannot be understood by a simple learning rule alone.
Project description:Using phylogenetic analysis on newly available sequences, we characterize A/chicken/Jiangsu/RD5/2013(H10N9) as currently closest precursor strain for the NA segment in the novel avian-origin H7N9 virus responsible for an outbreak in China. We also show that the internal segments of this precursor strain are closely related to those of the presumed precursor for the HA segment, A/duck/Zhejiang/12/2011(H7N3), which indicates that the sources of both HA and NA donors for the reassortant virus are of regional and not migratory-bird origin and highlights the role of chicken already in the early reassortment events.
Project description:The genome size of an organism is an important trait that has predictive values applicable to various scientific fields, including ecology. The main source of plant C-values is the Plant DNA C-values database of the Royal Botanic Gardens Kew, which currently contains 12,273 estimates. However, it covers only 2.9% of known angiosperm species and has gaps in the life form and geographic distribution of plants. Only 4.5% of C-value estimates come from researchers in Central and South America. This study provides 41 new C-values for the aroid family (Araceae), collected in the Piedras Blancas National Park area in southern Costa Rica, including terrestrial, epiphytic and aquatic life forms. Data from our study are combined with C-value entries in the RBGK database for Araceae. The analysis reveals a wider range of C-values for terrestrial aroids, consistent with other terrestrial plants, a trend toward slightly lower C-values for epiphytic forms, which is more consistent for obligate epiphytes, and comparatively low C-values for aquatic aroids.