Project description:Mesenchymal stem cell (MSC) therapy is poised to establish a new clinical paradigm; however, recent trials have produced mixed results. Although MSC were originally considered to treat connective tissue defects, preclinical studies revealed potent immunomodulatory properties that prompted the use of MSC to treat numerous inflammatory conditions. Unfortunately, although clinical trials have met safety endpoints, efficacy has not been demonstrated. We believe the challenge to demonstrate efficacy can be attributed in part to an incomplete understanding of the fate of MSC following infusion. Here, we highlight the clinical status of MSC therapy and discuss the importance of cell-tracking techniques, which have advanced our understanding of the fate and function of systemically infused MSC and might improve clinical application.
Project description:BACKGROUND:MicroRNAs (miRNAs) are short RNA sequences that guide post-transcriptional regulation of gene expression via complementarity to their target mRNAs. Discovered only recently, miRNAs have drawn a lot of attention. Multiple protein complexes interact to first cleave a hairpin from nascent RNA, export it into the cytosol, trim its loop, and incorporate it into the RISC complex which is important for binding its target mRNA. This process works within one cell, but circulating miRNAs have been described suggesting a role in cell-cell communication. MOTIVATION:Viruses and intracellular parasites like Toxoplasma gondii use miRNAs to manipulate host gene expression from within the cellular environment. However, recent research has claimed that a rice miRNA may regulate human gene expression. Despite ongoing debates about these findings and general reluctance to accept them, a recent report claimed that foodborne plant miRNAs pass through the digestive tract, travel through blood to be incorporated by alveolar cells excreting milk. The miRNAs are then said to have some immune-related function in the newborn. PRINCIPAL FINDINGS:We acquired the data that supports their claim and performed further analyses. In addition to the reported miRNAs, we were able to detect almost complete mRNAs and found that the foreign RNA expression profiles among samples are exceedingly similar. Inspecting the source of the data helped understand how RNAs could contaminate the samples. CONCLUSION:Viewing these findings in context with the difficulties foreign RNAs face on their route into breast milk and the fact that many identified foodborne miRNAs are not from actual food sources, we can conclude beyond reasonable doubt that the original claims and evidence presented may be due to artifacts. We report that the study claiming their existence is more likely to have detected RNA contamination than miRNAs.
Project description:Within the field of bioproduction, non-model organisms offer promise as bio-platform candidates. Non-model organisms can possess natural abilities to consume complex feedstocks, produce industrially useful chemicals, and withstand extreme environments that can be ideal for product extraction. However, non-model organisms also come with unique challenges due to lack of characterization. As a consequence, developing synthetic biology tools, predicting growth behavior, and building computational models can be difficult. There have been many advancements that have improved work with non-model organisms to address broad limitations, however each organism can come with unique surprises. Here we share our work in the non-model bacterium Actinobacillus succinognes 130Z, which includes both advancements in synthetic biology toolkit development and pitfalls in unpredictable fermentation behaviors. To develop a synthetic biology "tool kit" for A. succinogenes, information gleaned from a growth study and antibiotic screening was used to characterize 22 promoters which demonstrated a 260-fold range of fluorescence protein expression. The strongest of the promoters was incorporated into an inducible system for tunable gene control in A. succinogenes using the promoter for the lac operon as a template. This system flaunted a 481-fold range of expression and no significant basal expression. These findings were accompanied by unexpected changes in fermentation products characterized by a loss of succinic acid and increase in lactic acid after approximately 10 months in the lab. During evaluation of the fermentation shifts, new tests of the synthetic biology tools in a succinic acid producing strain revealed a significant loss in their functionality. Contamination and mutation were ruled out as causes and further testing is needed to elucidate the driving factors. The significance of this work is to share a successful tool development strategy that could be employed in other non-model species, report on an unfortunate phenomenon that needs addressed for further development of A. succinogenes, and provide a cautionary tale for those undertaking non-model research. In sharing our findings, we seek to provide tools and necessary information for further development of A. succinogenes as a platform for bioproduction of succinic acid and to illustrate the importance of diligent and long-term observation when working with non-model bacteria.
Project description:More than 50 years of research has yielded numerous Shigella vaccine candidates that have exemplified both the promise of vaccine-induced prevention of shigellosis and the impediments to developing a safe and effective vaccine for widespread use, a goal that has yet to be attained. This Review discusses the most advanced strategies for Shigella vaccine development, the immune responses that are elicited following disease or vaccination, the factors that have accelerated or impeded Shigella vaccine development and our ideas for the way forward.
Project description:As part of an interdisciplinary project on the environmental history of the Viennese Danube, the past river landscape was reconstructed. This article describes the different types of historical sources used for the GIS-based reconstruction, the underlying methodological approach and its limitations regarding reliability and information value. The reconstruction was based on three cornerstones: (1) the available historical sources; (2) knowledge about morphological processes typical for the Austrian Danube prior to regulation; and (3) the interpretation of past hydraulic measures with respect to their effectiveness and their impact on the river's behaviour. We compiled ten historical states of the riverscape step-by-step going backwards in time to the early 16th century. After one historical situation had been completed, we evaluated its relevance for the temporally younger situations and whether corrections would have to be made. Such a regressive-iterative approach allows for permanent critical revision of the reconstructed time segments already processed. The resulting maps of the Danube floodplain from 1529 to 2010 provide a solid basis for interpreting the environmental conditions for Vienna's urban development. They also help to localise certain riverine and urban landmarks (such as river arms or bridges) relevant for the history of Vienna. We conclude that the diversity of approaches and findings of the historical and natural sciences (river morphology, hydrology) provide key synergies.
Project description:XPD-like helicases constitute a prominent DNA helicase family critical for many aspects of genome maintenance. These enzymes share a unique structural feature, an auxiliary domain stabilized by an iron-sulphur (FeS) cluster, and a 5'-3' polarity of DNA translocation and duplex unwinding. Biochemical analyses alongside two single-molecule approaches, total internal reflection fluorescence microscopy and high-resolution optical tweezers, have shown how the unique structural features of XPD helicase and its specific patterns of substrate interactions tune the helicase for its specific cellular function and shape its molecular mechanism. The FeS domain forms a duplex separation wedge and contributes to an extended DNA binding site. Interactions within this site position the helicase in an orientation to unwind the duplex, control the helicase rate, and verify the integrity of the translocating strand. Consistent with its cellular role, processivity of XPD is limited and is defined by an idiosyncratic stepping kinetics. DNA duplex separation occurs in single base pair steps punctuated by frequent backward steps and conformational rearrangements of the protein-DNA complex. As such, the helicase in isolation mainly stabilizes spontaneous base pair opening and exhibits a limited ability to unwind stable DNA duplexes. The presence of a cognate ssDNA binding protein converts XPD into a vigorous helicase by destabilizing the upstream dsDNA as well as by trapping the unwound strands. Remarkably, the two proteins can co-exist on the same DNA strand without competing for binding. The current model of the XPD unwinding mechanism will be discussed along with possible modifications to this mechanism by the helicase interacting partners and unique features of such bio-medically important XPD-like helicases as FANCJ (BACH1), RTEL1 and CHLR1 (DDX11).
Project description:Bronchial thermoplasty (BT) is a novel therapy for patients with severe asthma. Using radio frequency thermal energy, it aims to reduce the airway smooth muscle mass. Several clinical trials have demonstrated improvements in asthma-related quality of life and a reduction in the number of exacerbations following treatment with BT. In addition, recent data has demonstrated the long-term safety of the procedure as well as sustained improvements in rates of asthma exacerbations, reduction in health care utilization, and improved quality of life. Further study is needed to elucidate the underlying mechanisms that result in these improvements. In addition, improved characterization of the asthma subphenotypes likely to exhibit the largest clinical benefit is a critical step in determining the precise role of BT in the management of severe asthma.
Project description:PurposeBronchial thermoplasty is approved in many countries worldwide as a non-pharmacological treatment for severe asthma. This review summarizes recent publications on the selection of patients with severe asthma for bronchial thermoplasty, predictors of a beneficial response and developments in the procedure and discusses specific issues about bronchial thermoplasty including effectiveness in clinical practice, mechanism of action, cost-effectiveness, and place in management.ResultsBronchial thermoplasty is a treatment option for patients with severe asthma after assessment and management of causes of difficult-to-control asthma, such as nonadherence, poor inhaler technique, comorbidities, under treatment, and other behavioral factors. Patients treated with bronchial thermoplasty in clinical practice have worse baseline characteristics and comparable clinical outcomes to clinical trial data. Bronchial thermoplasty causes a reduction in airway smooth muscle mass although it is uncertain whether this effect explains its efficacy since other mechanisms of action may be relevant, such as alterations in airway epithelial, gland, and/or nerve function; improvements in small airway function; or a placebo effect. The cost-effectiveness of bronchial thermoplasty is greater in countries where the costs of hospitalization and emergency department are high. The place of bronchial thermoplasty in the management of severe asthma is not certain, although some experts propose that bronchial thermoplasty should be considered for patients with severe asthma associated with non-type 2 inflammation or who fail to respond favorably to biologic therapies targeting type 2 inflammation.ConclusionBronchial thermoplasty is a modestly effective treatment for severe asthma after assessment and management of causes of difficult-to-control asthma. Asthma morbidity increases during and shortly after treatment. Follow-up studies provide reassurance on the long-term safety of the procedure. Uncertainties remain about predictors of response, mechanism(s) of action, and place in management of severe asthma.
Project description:BackgroundBronchial thermoplasty (BT) is a bronchoscopic treatment for severe asthma, of which the working mechanism and responder profile are partly unknown. The aim of this study is to analyse whether BT alters airway inflammation by epithelial gene expression, inflammatory cell counts and cytokines, and whether this relates to treatment response.MethodsIn this clinical trial, 28 severe asthma patients underwent bronchoscopy before and after treatment to obtain bronchial brushes and bronchoalveolar lavage fluid (BALF) from treated and untreated airways. RNA was extracted from bronchial brushes for transcriptome analysis, and BALF cells and cytokines were analysed. Asthma quality of life questionnaires were used to distinguish responders from non-responders. We compared results before and after treatment, between treated and untreated airways, and between responders and non-responders.ResultsGene expression of airway epithelium related to airway inflammation gene set was significantly downregulated in treated airways compared to untreated airways, although this did not differ for patients before and after treatment. No differences were observed in cell counts and cytokines, neither from the untreated compared to treated airways, nor before and after treatment. At baseline, compared to non-responders, the expression of genes related to glycolysis in bronchial epithelium was downregulated and both BALF and blood eosinophil counts were higher in responders.ConclusionLocal differences in gene sets pertaining to epithelial inflammatory status were identified between treated and untreated airways after treatment, not resulting in changes in differential cell counts and cytokine analyses in BALF. Secondly, baseline epithelial glycolysis genes and eosinophil counts in BALF and blood were different between responders and non-responders. The observations from this study demonstrate the potential impact of BT on epithelial gene expression related to airway inflammation while also identifying a possible responder profile.
Project description:BackgroundBronchial thermoplasty regulates structural abnormalities involved in airway narrowing in asthma. In the present study we aimed to investigate the effect of bronchial thermoplasty on histopathological bronchial structures in distinct asthma endotypes/phenotypes.MethodsEndobronchial biopsies (n = 450) were collected from 30 patients with severe uncontrolled asthma before bronchial thermoplasty and after 3 sequential bronchial thermoplasties. Patients were classified based on blood eosinophils, atopy, allergy and smoke exposure. Tissue sections were assessed for histopathological parameters and expression of heat-shock proteins and glucocorticoid receptor. Proliferating cells were determined by Ki67-staining.ResultsIn all patients, bronchial thermoplasty improved asthma control (p < 0.001), reduced airway smooth muscle (p = 0.014) and increased proliferative (Ki67 +) epithelial cells (p = 0.014). After bronchial thermoplasty, airway smooth muscle decreased predominantly in patients with T2 high asthma endotype. Epithelial cell proliferation was increased after bronchial thermoplasty in patients with low blood eosinophils (p = 0.016), patients with no allergy (p = 0.028) and patients without smoke exposure (p = 0.034). In all patients, bronchial thermoplasty increased the expression of glucocorticoid receptor in epithelial cells (p = 0.018) and subepithelial mesenchymal cells (p = 0.033) and the translocation of glucocorticoid receptor in the nucleus (p = 0.036). Furthermore, bronchial thermoplasty increased the expression of heat shock protein-70 (p = 0.002) and heat shock protein-90 (p = 0.001) in epithelial cells and decreased the expression of heat shock protein-70 (p = 0.009) and heat shock protein-90 (p = 0.002) in subepithelial mesenchymal cells. The effect of bronchial thermoplasty on the expression of heat shock proteins -70 and -90 was distinctive across different asthma endotypes/phenotypes.ConclusionsBronchial thermoplasty leads to a diminishment of airway smooth muscle, to epithelial cell regeneration, increased expression and activation of glucocorticoid receptor in the airways and increased expression of heat shock proteins in the epithelium. Histopathological effects appear to be distinct in different endotypes/phenotypes indicating that the beneficial effects of bronchial thermoplasty are achieved by diverse molecular targets associated with asthma endotypes/phenotypes.