Unknown

Dataset Information

0

Imaging low-mass planets within the habitable zone of α Centauri.


ABSTRACT: Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, α Centauri. Based on 75-80% of the best quality images from 100 h of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of α Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around α Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes.

SUBMITTER: Wagner K 

PROVIDER: S-EPMC7876126 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4156685 | biostudies-literature
| S-EPMC5992858 | biostudies-literature
| S-EPMC6090540 | biostudies-literature
| S-EPMC7198600 | biostudies-literature
| S-EPMC5036156 | biostudies-literature
| S-EPMC5851667 | biostudies-literature
| S-EPMC7708846 | biostudies-literature
| S-EPMC3963172 | biostudies-literature
| S-EPMC4392804 | biostudies-literature
| S-EPMC5803191 | biostudies-literature