Unknown

Dataset Information

0

P2X-GCaMPs as Versatile Tools for Imaging Extracellular ATP Signaling.


ABSTRACT: ATP is an extracellular signaling molecule involved in numerous physiological and pathologic processes. However, in situ characterization of the spatiotemporal dynamic of extracellular ATP is still challenging because of the lack of sensor with appropriate specificity, sensitivity, and kinetics. Here, we report the development of biosensors based on the fusion of cation permeable ATP receptors (P2X) to genetically encoded calcium sensors [genetically encoded calcium indicator (GECI)]. By combining the features of P2X receptors with the high signal-to-noise ratio of GECIs, we generated ultrasensitive green and red fluorescent sniffers that detect nanomolar ATP concentrations in situ and also enable the tracking of P2X receptor activity. We provide the proof of concept that these sensors can dynamically track ATP release evoked by depolarization in mouse neurons or by extracellular hypotonicity. Targeting these P2X-based biosensors to diverse cell types should advance our knowledge of extracellular ATP dynamics in vivo.

SUBMITTER: Ollivier M 

PROVIDER: S-EPMC7877454 | biostudies-literature | 2021 Jan-Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

P2X-GCaMPs as Versatile Tools for Imaging Extracellular ATP Signaling.

Ollivier Matthias M   Beudez Juline J   Linck Nathalie N   Grutter Thomas T   Compan Vincent V   Rassendren Francois F  

eNeuro 20210128 1


ATP is an extracellular signaling molecule involved in numerous physiological and pathologic processes. However, <i>in situ</i> characterization of the spatiotemporal dynamic of extracellular ATP is still challenging because of the lack of sensor with appropriate specificity, sensitivity, and kinetics. Here, we report the development of biosensors based on the fusion of cation permeable ATP receptors (P2X) to genetically encoded calcium sensors [genetically encoded calcium indicator (GECI)]. By  ...[more]

Similar Datasets

| S-EPMC3189881 | biostudies-literature
| S-EPMC3767550 | biostudies-literature
| S-EPMC3109027 | biostudies-literature
| S-EPMC2606937 | biostudies-literature
| S-EPMC7337098 | biostudies-literature
| S-EPMC3589399 | biostudies-literature
| S-EPMC5679667 | biostudies-literature
| S-EPMC5023625 | biostudies-literature
| S-EPMC7072326 | biostudies-literature
| S-EPMC6804718 | biostudies-literature