Moxibustion against Cyclophosphamide-Induced Premature Ovarian Failure in Rats through Inhibiting NLRP3-/Caspase-1-/GSDMD-Dependent Pyroptosis.
Ontology highlight
ABSTRACT: Premature ovarian failure (POF) is a clinical term used to describe a condition in which women present with amenorrhoea, hypergonadotropic hypogonadism, and infertility under 40 years old, which are mainly characterized by ovarian granulosa cell inflammation and death. Pyroptosis is a proinflammatory form of programmed cell death. However, the roles of pyroptosis in POF and moxibustion (Mox) on pyroptosis in POF have not been elucidated. The aim of the present study was to investigate the protective effect of moxibustion against cyclophosphamide- (CP-) induced POF and to determine the underlying mechanisms. The results indicated that Mox could decrease the follicle-stimulating hormone (FSH) and luteotropic hormone (LH) and increase estradiol (E2) in serum, which indicated that it could improve ovarian reserve capacity. Mox also ameliorated CP-induced ovarian injury accompanied by decreased levels of interleukin-1? (IL-1?), IL-18, and gasdermin D (GSDMD), which are key features of pyroptosis. Further investigation showed that Mox alleviated POF through NLRP3-mediated pyroptosis. On the one hand, Mox directly inhibited TXNIP/NLRP3/caspase-1 signaling-induced pyroptosis, and on the other hand, it indirectly decreased NLRP3, pro-IL-1?, and pro-IL-18 through inhibiting TLR4/MyD88/NF-?B signaling. Our results show that Mox might be a new therapeutic strategy for the treatment of POF.
SUBMITTER: Zhang CR
PROVIDER: S-EPMC7878072 | biostudies-literature | 2021
REPOSITORIES: biostudies-literature
ACCESS DATA