Unknown

Dataset Information

0

Internet search and medicaid prescription drug data as predictors of opioid emergency department visits.


ABSTRACT: The primary contributors to the opioid crisis continue to rapidly evolve both geographically and temporally, hampering the ability to halt the growing epidemic. To address this issue, we evaluated whether integration of near real-time social/behavioral (i.e., Google Trends) and traditional health care (i.e., Medicaid prescription drug utilization) data might predict geographic and longitudinal trends in opioid-related Emergency Department (ED) visits. From January 2005 through December 2015, we collected quarterly State Drug Utilization Data; opioid-related internet search terms/phrases; and opioid-related ED visit data. Modeling was conducted using least absolute shrinkage and selection operator (LASSO) regression prediction. Models combining Google and Medicaid variables were a better fit and more accurate (R2 values from 0.913 to 0.960, across states) than models using either data source alone. The combined model predicted sharp and state-specific changes in ED visits during the post 2013 transition from heroin to fentanyl. Models integrating internet search and drug utilization data might inform policy efforts about regional medical treatment preferences and needs.

SUBMITTER: Young SD 

PROVIDER: S-EPMC7878816 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Internet search and medicaid prescription drug data as predictors of opioid emergency department visits.

Young Sean D SD   Zhang Qingpeng Q   Zhou Jiandong J   Pacula Rosalie Liccardo RL  

NPJ digital medicine 20210211 1


The primary contributors to the opioid crisis continue to rapidly evolve both geographically and temporally, hampering the ability to halt the growing epidemic. To address this issue, we evaluated whether integration of near real-time social/behavioral (i.e., Google Trends) and traditional health care (i.e., Medicaid prescription drug utilization) data might predict geographic and longitudinal trends in opioid-related Emergency Department (ED) visits. From January 2005 through December 2015, we  ...[more]

Similar Datasets

| S-EPMC7240762 | biostudies-literature
| S-EPMC5820164 | biostudies-literature
| S-EPMC9198732 | biostudies-literature
| S-EPMC4911899 | biostudies-literature
| S-EPMC8206309 | biostudies-literature
| S-EPMC5682132 | biostudies-literature
| S-EPMC7595391 | biostudies-literature
| S-EPMC7492769 | biostudies-literature
| S-EPMC7837768 | biostudies-literature
| S-EPMC10262360 | biostudies-literature