Unknown

Dataset Information

0

Mapping drug-target interactions and synergy in multi-molecular therapeutics for pressure-overload cardiac hypertrophy.


ABSTRACT: Advancements in systems biology have resulted in the development of network pharmacology, leading to a paradigm shift from "one-target, one-drug" to "target-network, multi-component therapeutics". We employ a chimeric approach involving in-vivo assays, gene expression analysis, cheminformatics, and network biology to deduce the regulatory actions of a multi-constituent Ayurvedic concoction, Amalaki Rasayana (AR) in animal models for its effect in pressure-overload cardiac hypertrophy. The proteomics analysis of in-vivo assays for Aorta Constricted and Biologically Aged rat models identify proteins expressed under each condition. Network analysis mapping protein-protein interactions and synergistic actions of AR using multi-component networks reveal drug targets such as ACADM, COX4I1, COX6B1, HBB, MYH14, and SLC25A4, as potential pharmacological co-targets for cardiac hypertrophy. Further, five out of eighteen AR constituents potentially target these proteins. We propose a distinct prospective strategy for the discovery of network pharmacological therapies and repositioning of existing drug molecules for treating pressure-overload cardiac hypertrophy.

SUBMITTER: Rai A 

PROVIDER: S-EPMC7884732 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mapping drug-target interactions and synergy in multi-molecular therapeutics for pressure-overload cardiac hypertrophy.

Rai Aparna A   Kumar Vikas V   Jerath Gaurav G   Kartha C C CC   Ramakrishnan Vibin V  

NPJ systems biology and applications 20210215 1


Advancements in systems biology have resulted in the development of network pharmacology, leading to a paradigm shift from "one-target, one-drug" to "target-network, multi-component therapeutics". We employ a chimeric approach involving in-vivo assays, gene expression analysis, cheminformatics, and network biology to deduce the regulatory actions of a multi-constituent Ayurvedic concoction, Amalaki Rasayana (AR) in animal models for its effect in pressure-overload cardiac hypertrophy. The proteo  ...[more]

Similar Datasets

2005-06-29 | GSE2459 | GEO
2002-07-30 | GSE76 | GEO
| S-EPMC4488877 | biostudies-other
| S-EPMC2610480 | biostudies-literature
2006-07-04 | GSE5129 | GEO
| S-EPMC3929275 | biostudies-literature
2018-10-09 | GSE120740 | GEO
2019-04-30 | GSE106897 | GEO
| S-EPMC8006657 | biostudies-literature
| S-EPMC7000872 | biostudies-literature