Unknown

Dataset Information

0

FITNESS Acts as a Negative Regulator of Immunity and Influences the Plant Reproductive Output After Pseudomonas syringae Infection.


ABSTRACT: Plants, as sessile organisms, are continuously threatened by multiple factors and therefore their profitable production depends on how they can defend themselves. We have previously reported on the characterization of fitness mutants which are more tolerant to environmental stresses due to the activation of defense mechanisms. Here, we demonstrate that in fitness mutants, which accumulate moderate levels of salicylic acid (SA) and have SA signaling activated, pathogen infection is restricted. Also, we demonstrate that NPR1 is essential in fitness mutants for SA storage and defense activation but not for SA synthesis after Pseudomonas syringae (Pst) infection. Additionally, these mutants do not appear to be metabolically impared, resulting in a higher seed set even after pathogen attack. The FITNESS transcriptional network includes defense-related transcription factors (TFs) such as ANAC072, ORA59, and ERF1 as well as jasmonic acid (JA) related genes including LIPOXYGENASE2 (LOX2), CORONATINE INSENSITIVE1 (COI1), JASMONATE ZIM-domain3 (JAZ3) and JAZ10. Induction of FITNESS expression leads to COI1 downregulation, and to JAZ3 and JAZ10 upregulation. As COI1 is an essential component of the bioactive JA perception apparatus and is required for most JA-signaling processes, elevated FITNESS expression leads to modulated JA-related responses. Taken together, FITNESS plays a crucial role during pathogen attack and allows a cost-efficient way to prevent undesirable developmental effects.

SUBMITTER: Mengarelli DA 

PROVIDER: S-EPMC7889524 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

FITNESS Acts as a Negative Regulator of Immunity and Influences the Plant Reproductive Output After <i>Pseudomonas syringae</i> Infection.

Mengarelli Diego Alberto DA   Roldán Tewes Lara L   Balazadeh Salma S   Zanor María Inés MI  

Frontiers in plant science 20210204


Plants, as sessile organisms, are continuously threatened by multiple factors and therefore their profitable production depends on how they can defend themselves. We have previously reported on the characterization of <i>fitness</i> mutants which are more tolerant to environmental stresses due to the activation of defense mechanisms. Here, we demonstrate that in <i>fitness</i> mutants, which accumulate moderate levels of salicylic acid (SA) and have SA signaling activated, pathogen infection is  ...[more]

Similar Datasets

| S-EPMC10472101 | biostudies-literature
| S-EPMC5263251 | biostudies-literature
| S-EPMC6354636 | biostudies-literature
| S-EPMC4224013 | biostudies-literature
| S-EPMC4263708 | biostudies-literature
| S-EPMC6637894 | biostudies-literature
| S-EPMC8635791 | biostudies-literature
| S-EPMC10269811 | biostudies-literature
| S-EPMC9135338 | biostudies-literature
| S-EPMC9602974 | biostudies-literature