Project description:Artificial bowel sphincters (ABS), specifically the Acticon Neosphincter, have been used to treat fecal incontinence (FI) since the early 2000s. This report and literature review focuses on possible device malfunctions of previously placed ABS for FI. We present a case of device malfunction in a patient with FI who had a previously placed ABS, review relevant literature, and discuss outcomes of ABS placement with possible device malfunctions.
Project description:BackgroundSatellites or tandem repeats are very abundant in many eukaryotic genomes. Occasionally they have been reported to be present in some prokaryotes, but to our knowledge there is no general comparative study on their occurrence. For this reason we present here an overview of the distribution and properties of satellites in a set of representative species. Our results provide novel insights into the evolutionary relationship between eukaryotes, Archaea and Bacteria.ResultsWe have searched all possible satellites present in the NCBI reference group of genomes in Archaea (142 species) and in Bacteria (119 species), detecting 2735 satellites in Archaea and 1067 in Bacteria. We have found that the distribution of satellites is very variable in different organisms. The archaeal Methanosarcina class stands out for the large amount of satellites in their genomes. Satellites from a few species have similar characteristics to those in eukaryotes, but most species have very few satellites: only 21 species in Archaea and 18 in Bacteria have more than 4 satellites/Mb. The distribution of satellites in these species is reminiscent of what is found in eukaryotes, but we find two significant differences: most satellites have a short length and many of them correspond to segments of genes coding for amino acid repeats. Transposition of non-coding satellites throughout the genome occurs rarely: only in the bacteria Leptospira interrogans and the archaea Methanocella conradii we have detected satellite families of transposed satellites with long repeats.ConclusionsOur results demonstrate that the presence of satellites in the genome is not an exclusive feature of eukaryotes. We have described a few prokaryotes which do contain satellites. We present a discussion on their eventual evolutionary significance.
Project description:BackgroundTo study the concentrations of monocyte chemoattractant protein-1 (MCP-1), hepatocyte growth factor (HGF), and insulin-like growth factor-1 (IGF-1) in peritoneal fluid (PF) and serum, and to evaluate their expressions by PF and peripheral blood mononuclear cells (PFMCs and PBMCs, respectively), and ectopic and eutopic endometrial stromal cells of patients with endometriosis (EESCs and EuESCs, respectively) compared with controls.MethodsThe concentrations of mentioned cytokines in serum and PF, as well as their expression in PBMCs, PFMCs, EuESCs and EESCs from endometriosis patients and controls were assessed.ResultsThe levels of MCP-1, HGF, and IGF-1 in serum and PF in women with endometriosis were significantly higher than the controls (P < 0.05-P < 0.001). Gene expression of MCP-1 and IGF-1 in the PFMCs, PBMCs and EESCs also showed an increased level compared to controls (P < 0.05-P < 0.01). The protein expression of MCP-1 and IGF-1 by PFMCs was statistically higher in endometriotic women (P < 0.05 and P < 0.01, respectively). The gene and protein expression of HGF in PFMCs and its gene expression by EESCs were significantly higher in endometriotic women compared to controls (P < 0.05-P < 0.01).ConclusionsThe higher concentrations of mentioned cytokines in serum and PF and their higher expression by PFMCs and EESCs in endometriosis patients may contribute to the development of endometriosis.
Project description:Women with endometriosis are at increased risk of developing ovarian cancer, specifically ovarian endometrioid, low-grade serous, and clear-cell adenocarcinoma. An important clinical caveat to the association of endometriosis with ovarian cancer is the improved prognosis for women with endometriosis at time of ovarian cancer staging. Whether endometriosis-associated ovarian cancers develop from the molecular transformation of endometriosis or develop because of the endometriotic tumor microenvironment remain unknown. Additionally, how the presence of endometriosis improves prognosis is also undefined, but likely relies on the endometriotic microenvironment. The unique tumor microenvironment of endometriosis is composed of epithelial, stromal, and immune cells, which adapt to survive in hypoxic conditions with high levels of iron, estrogen, and inflammatory cytokines and chemokines. Understanding the unique molecular features of the endometriotic tumor microenvironment may lead to impactful precision therapies and/or modalities for prevention. A challenge to this important study is the rarity of well-characterized clinical samples and the limited model systems. In this review, we will describe the unique molecular features of endometriosis-associated ovarian cancers, the endometriotic tumor microenvironment, and available model systems for endometriosis-associated ovarian cancers. Continued research on these unique ovarian cancers may lead to improved prevention and treatment options.
Project description:The genomes of many eukaryotes contain DNA repeats in the form of both tandem and interspersed elements with distinct structure, evolutionary histories, and mechanisms of emergence and amplification. Although there is considerable knowledge regarding their diversity, there is little evidence directly linking these two types. Different tandem repeats derived from portions of short interspersed elements (SINEs) belonging to different families were identified in 56 genomes of squamate reptiles. All loci of SINE-derived satellites (sSats) were thoroughly analyzed. Snake sSats exhibited high similarity in both structure and copy number, while other taxa may have highly diverse (geckos), rare (Darevskia lizards), or missing sSats (agamid lizards). Similar to most satellites associated with heterochromatin, sSats are likely linked to subtelomeric chromosomal regions. Discovered tandem repeats derived from SINEs exhibit satellite-like properties, although they have not amplified to the same degree as typical satellites. The autonomous emergence of distinct sSats from diverse SINE families in numerous squamate species suggests a nonrandom process of satellite genesis originating from repetitive SINEs.
Project description:SummaryHuman alpha satellite and satellite 2/3 contribute to several percent of the human genome. However, identifying these sequences with traditional algorithms is computationally intensive. Here we develop dna-brnn, a recurrent neural network to learn the sequences of the two classes of centromeric repeats. It achieves high similarity to RepeatMasker and is times faster. Dna-brnn explores a novel application of deep learning and may accelerate the study of the evolution of the two repeat classes.Availability and implementationhttps://github.com/lh3/dna-nn.
Project description:Early detection of lung cancer is the key to improving treatment and prognosis of this disease, and the advent of advances in computed tomography (CT) imaging and national screening programs have improved the detection rate of very small pulmonary lesions. As such, the management of this sub-centimetric and often sub-solid lesions has become quite challenging for clinicians, especially for choosing the most suitable diagnostic method. In clinical practice, to fulfill this diagnostic yield, transthoracic needle biopsy (TTNB) is often the first choice especially for peripheral nodules. For lesions for which TTNB could present technical difficulties or failed, other diagnostic strategies are needed. In this case, video-assisted thoracic surgery (VATS) is the gold standard to reach the diagnosis of lung nodules suspect of being malignant. Nonetheless it's often not easy the identification of such lesions during VATS because of their little dimensions, non-firm consistency, deep localization. In literature various marking techniques have been described, in order to improve intraoperative nodules detection and to reduce conversion rate to thoracotomy: CT-guided hookwire positioning, methylene blue staining, intra-operative ultrasound and electromagnetic navigation bronchoscopy are the most used. The scientific evidence on this matter is weak because there are no randomized clinical trials but only case series on single techniques with no comparison on efficacy, so there are no guidelines to refer. From this standing, in this article we conducted a narrative review of the existing literature on the subject, with the aim of outlining a framework as complete as possible. We analyzed strengths and weaknesses of the main techniques reported, so as to allow the clinician to orient himself with greater ease.