Project description:Several neutralizing monoclonal antibodies (mAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed and are now under evaluation in clinical trials. With the US Food and Drug Administration recently granting emergency use authorizations for neutralizing mAbs in non-hospitalized patients with mild-to-moderate COVID-19, there is an urgent need to discuss the broader potential of these novel therapies and to develop strategies to deploy them effectively in clinical practice, given limited initial availability. Here, we review the precedent for passive immunization and lessons learned from using antibody therapies for viral infections such as respiratory syncytial virus, Ebola virus and SARS-CoV infections. We then focus on the deployment of convalescent plasma and neutralizing mAbs for treatment of SARS-CoV-2. We review specific clinical questions, including the rationale for stratification of patients, potential biomarkers, known risk factors and temporal considerations for optimal clinical use. To answer these questions, there is a need to understand factors such as the kinetics of viral load and its correlation with clinical outcomes, endogenous antibody responses, pharmacokinetic properties of neutralizing mAbs and the potential benefit of combining antibodies to defend against emerging viral variants.
Project description:The SARS-CoV-2 pandemic has caused unprecedented global health and economic crises. Several vaccine approaches and repurposed drugs are currently under evaluation for safety and efficacy. However, none of them have been approved for COVID-19 yet. Meanwhile, several nMAbs targeting SARS-CoV-2 spike glycoprotein are in different stages of development and clinical testing. Preclinical studies have shown that cocktails of potent nMAbs targeting the receptor binding site of SARS-CoV-2, as well as broad-nMAbs targeting conserved regions within the virus spike, might be effective for the treatment and prophylaxis of COVID-19. Currently, several clinical trials have started to test safety, tolerability, PKs and efficacy of these nMAbs. One paramount limitation for the use of nMAbs in clinical settings is the production of large amounts of MAbs and the high costs related to it. Cooperation among public and private institutions coupled with speed of development, rapid safety evaluation and efficacy, and early planning for scale-up and manufacture will be critical for the control of COVID-19 pandemic.
Project description:Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initiates the infection process by binding to the viral cellular receptor angiotensin-converting enzyme 2 through the receptor-binding domain (RBD) in the S1 subunit of the viral spike (S) protein. This event is followed by virus-cell membrane fusion mediated by the S2 subunit, which allows virus entry into the host cell. Therefore, the SARS-CoV-2 S protein is a key therapeutic target, and prevention and treatment of coronavirus disease 2019 (COVID-19) have focused on the development of neutralizing monoclonal antibodies (nAbs) that target this protein. In this review, we summarize the nAbs targeting SARS-CoV-2 proteins that have been developed to date, with a focus on the N-terminal domain and RBD of the S protein. We also describe the roles that binding affinity, neutralizing activity, and protection provided by these nAbs play in the prevention and treatment of COVID-19 and discuss the potential to improve nAb efficiency against multiple SARS-CoV-2 variants. This review provides important information for the development of effective nAbs with broad-spectrum activity against current and future SARS-CoV-2 strains.
Project description:The COVID-19 pandemic caused by SARS-CoV-2 has led to hundreds of millions of infections and millions of deaths, however, human monoclonal antibodies (mAbs) can be an effective treatment. Since SARS-CoV-2 emerged, a variety of strains have acquired increasing numbers of mutations to gain increased transmissibility and escape from the immune response. Most reported neutralizing human mAbs, including all approved therapeutic ones, have been knocked down or out by these mutations. Broadly neutralizing mAbs are therefore of great value, to treat current and possible future variants. Here, we review four types of neutralizing mAbs against the spike protein with broad potency against previously and currently circulating variants. These mAbs target the receptor-binding domain, the subdomain 1, the stem helix, or the fusion peptide. Understanding how these mAbs retain potency in the face of mutational change could guide future development of therapeutic antibodies and vaccines.
Project description:Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics.
Project description:COVID-19 exhibits variable symptom severity ranging from asymptomatic to life-threatening, yet the relationship between severity and the humoral immune response is poorly understood. We examined antibody responses in 113 COVID-19 patients and found that severe cases resulting in intubation or death exhibited increased inflammatory markers, lymphopenia, and high anti-RBD antibody levels. While anti-RBD IgG levels generally correlated with neutralization titer, quantitation of neutralization potency revealed that high potency was a predictor of survival. In addition to neutralization of wild-type SARS-CoV-2, patient sera were also able to neutralize the recently emerged SARS-CoV-2 mutant D614G, suggesting protection from reinfection by this strain. However, SARS-CoV-2 sera was unable to cross-neutralize a highly-homologous pre-emergent bat coronavirus, WIV1-CoV, that has not yet crossed the species barrier. These results highlight the importance of neutralizing humoral immunity on disease progression and the need to develop broadly protective interventions to prevent future coronavirus pandemics.
Project description:Coronavirus disease 2019 (COVID-19) exhibits variable symptom severity ranging from asymptomatic to life-threatening, yet the relationship between severity and the humoral immune response is poorly understood. We examined antibody responses in 113 COVID-19 patients and found that severe cases resulting in intubation or death exhibited increased inflammatory markers, lymphopenia, pro-inflammatory cytokines, and high anti-receptor binding domain (RBD) antibody levels. Although anti-RBD immunoglobulin G (IgG) levels generally correlated with neutralization titer, quantitation of neutralization potency revealed that high potency was a predictor of survival. In addition to neutralization of wild-type SARS-CoV-2, patient sera were also able to neutralize the recently emerged SARS-CoV-2 mutant D614G, suggesting cross-protection from reinfection by either strain. However, SARS-CoV-2 sera generally lacked cross-neutralization to a highly homologous pre-emergent bat coronavirus, WIV1-CoV, which has not yet crossed the species barrier. These results highlight the importance of neutralizing humoral immunity on disease progression and the need to develop broadly protective interventions to prevent future coronavirus pandemics.
Project description:After a short recovery period, COVID-19 reinfections could occur in convalescent patients, even those with measurable levels of neutralizing antibodies. Effective vaccinations and protective public health measures are recommended for the convalescent COVID-19 patients.
Project description:BackgroundMorbidity and mortality associated with coronavirus disease 2019 (COVID-19) infection in kidney transplant recipients are high and early outpatient interventions to prevent progression to severe disease are needed. SARS-CoV-2 neutralizing mAbs, including bamlanivimab and casirivimab-imdevimab, received emergency use authorization in the United States in November 2020 for treatment of mild to moderate COVID-19 disease.MethodsWe performed a retrospective analysis of 27 kidney transplant recipients diagnosed with COVID-19 between July 2020 and February 2021 who were treated with bamlanivimab or casirivimab-imdevimab and immunosuppression reduction. We additionally identified 13 kidney transplant recipients with COVID-19 who had mild to moderate disease at presentation, who did not receive mAbs, and had SARS-CoV-2 serology testing available.ResultsThere were no deaths or graft failures in either group. Both infusions were well tolerated. Four of the 27 patients treated with mAbs required hospitalization due to COVID-19. Four of 13 patients who did not receive mAbs required hospitalization due to COVID-19. Patients who received mAbs demonstrated measurable anti-SARS-CoV-2 IgG with angiotensin-converting enzyme 2 (ACE2) receptor blocking activity at the highest level detectable at 90 days postinfusion, whereas ACE2 blocking activity acquired from natural immunity in the mAb-untreated group was weak.ConclusionsBamlanivimab and casirivimab-imdevimab combined with immunosuppression reduction were well tolerated and associated with favorable clinical outcomes in kidney transplant recipients diagnosed with mild to moderate COVID-19.