Ontology highlight
ABSTRACT: Key points
During long-duration spaceflights, some astronauts develop structural ocular changes including optic disc oedema that resemble signs of intracranial hypertension. In the present study, intracranial pressure was estimated non-invasively (nICP) using a model-based analysis of cerebral blood velocity and arterial blood pressure waveforms in 11 astronauts before and after long-duration spaceflights. Our results show that group-averaged estimates of nICP decreased significantly in nine astronauts without optic disc oedema, suggesting that the cephalad fluid shift during long-duration spaceflight rarely increased postflight intracranial pressure. The results of the two astronauts with optic disc oedema suggest that both increases and decreases in nICP are observed post-flight in astronauts with ocular alterations, arguing against a primary causal relationship between elevated ICP and spaceflight associated optical changes. Cerebral blood velocity increased independently of nICP and spaceflight-associated ocular alterations. This increase may be caused by the reduced haemoglobin concentration after long-duration spaceflight.Abstract
Persistently elevated intracranial pressure (ICP) above upright values is a suspected cause of optic disc oedema in astronauts. However, no systematic studies have evaluated changes in ICP from preflight. Therefore, ICP was estimated non-invasively before and after spaceflight to test whether ICP would increase after long-duration spaceflight. Cerebral blood velocity in the middle cerebral artery (MCAv) was obtained by transcranial Doppler sonography and arterial pressure in the radial artery was obtained by tonometry, in the supine and sitting positions before and after 4-12 months of spaceflight in 11 astronauts (10 males and 1 female, 46 ± 7 years old at launch). Non-invasive ICP (nICP) was computed using a validated model-based estimation method. Mean MCAv increased significantly after spaceflight (ANOVA, P = 0.007). Haemoglobin decreased significantly after spaceflight (14.6 ± 0.8 to 13.3 ± 0.7 g/dL, P < 0.001). A repeated measures correlation analysis indicated a negative correlation between haemoglobin and mean MCAv (r = -0.589, regression coefficient = -4.68). The nICP did not change significantly after spaceflight in the 11 astronauts. However, nICP decreased significantly by 15% in nine astronauts without optic disc oedema (P < 0.005). Only one astronaut increased nICP to relatively high levels after spaceflight. Contrary to our hypothesis, nICP did not increase after long-duration spaceflight in the vast majority (>90%) of astronauts, suggesting that the cephalad fluid shift during spaceflight does not systematically or consistently elevate postflight ICP in astronauts. Independently of nICP and ocular alterations, the present results of mean MCAv suggest that long-duration spaceflight may increase cerebral blood flow, possibly due to reduced haemoglobin concentration.
SUBMITTER: Iwasaki KI
PROVIDER: S-EPMC7894300 | biostudies-literature | 2021 Feb
REPOSITORIES: biostudies-literature
The Journal of physiology 20201111 4
<h4>Key points</h4>During long-duration spaceflights, some astronauts develop structural ocular changes including optic disc oedema that resemble signs of intracranial hypertension. In the present study, intracranial pressure was estimated non-invasively (nICP) using a model-based analysis of cerebral blood velocity and arterial blood pressure waveforms in 11 astronauts before and after long-duration spaceflights. Our results show that group-averaged estimates of nICP decreased significantly in ...[more]