Project description:Polycomb repressive complex 2 (PRC2) methylates histone H3 tails at lysine 27 and is essential for embryonic development. The three core components of PRC2, Eed, Ezh2, and Suz12, are also highly expressed in embryonic stem (ES) cells, where they are postulated to repress developmental regulators and thereby prevent differentiation to maintain the pluripotent state. We performed gene expression and chimera analyses on low- and high-passage Eed(null) ES cells to determine whether PRC2 is required for the maintenance of pluripotency. We report here that although developmental regulators are overexpressed in Eed(null) ES cells, both low- and high-passage cells are functionally pluripotent. We hypothesize that they are pluripotent because they maintain expression of critical pluripotency factors. Given that EED is required for stability of EZH2, the catalytic subunit of the complex, these data suggest that PRC2 is not necessary for the maintenance of the pluripotent state in ES cells. We propose a positive-only model of embryonic stem cell maintenance, where positive regulation of pluripotency factors is sufficient to mediate stem cell pluripotency. Disclosure of potential conflicts of interest is found at the end of this article.
Project description:Polycomb group (PcG) proteins form multiprotein complexes that affect stem cell identity and fate decisions by still largely unexplored mechanisms. Here, by performing a CRISPR-based loss-of-function screen in embryonic stem cells (ESCs), we identify PcG gene Mga involved in the repression of endodermal transcription factor Gata6 We report that deletion of Mga results in peri-implantation embryonic lethality in mice. We further demonstrate that Mga-null ESCs exhibit impaired self-renewal and spontaneous differentiation to primitive endoderm (PE). Our data support a model in which Mga might serve as a scaffold for PRC1.6 assembly and guide this multimeric complex to specific genomic targets including genes that encode endodermal factors Gata4, Gata6, and Sox17. Our findings uncover an unexpected function of Mga in ESCs, where it functions as a gatekeeper to prevent ESCs from entering into the PE lineage by directly repressing expression of a set of endoderm differentiation master genes.
Project description:Unlike mouse embryonic stem cells (ESCs), which are closely related to the inner cell mass, human ESCs appear to be more closely related to the later primitive ectoderm. For example, human ESCs and primitive ectoderm share a common epithelial morphology, growth factor requirements, and the potential to differentiate to all three embryonic germ layers. However, it has previously been shown that human ESCs can also differentiate to cells expressing markers of trophoblast, an extraembryonic lineage formed before the formation of primitive ectoderm. Here, we show that phorbol ester 12-O-tetradecanoylphorbol 13-acetate causes human ESCs to undergo an epithelial mesenchymal transition and to differentiate into cells expressing markers of parietal endoderm, another extraembryonic lineage. We further confirmed that this differentiation is through the activation of protein kinase C (PKC) pathway and demonstrated that a particular PKC subtype, PKC-?, is most responsible for this transition.
Project description:Embryonic stem cells (ESCs) derived from preimplantation blastocysts have unique self-renewal and multilineage differentiation properties that are controlled by key components of a core regulatory network including Oct4, Sox2, and Nanog. Understanding molecular underpinnings of these properties requires identification and characterization of additional factors that act in conjunction with these key factors in ESCs. We have previously identified Zfp281, a Krüppel-like zinc finger transcription factor, as an interaction partner of Nanog. We now present detailed functional analyses of Zfp281 using a genetically ablated null allele in mouse ESCs. Our data show that while Zfp281 is dispensable for establishment and maintenance of ESCs, it is required for their proper differentiation in vitro. We performed microarray profiling in combination with previously published datasets of Zfp281 global target gene occupancy and found that Zfp281 mainly functions as a repressor to restrict expression of many stem cell pluripotency genes. In particular, we demonstrated that deletion of Zfp281 resulted in upregulation of Nanog at both the transcript and protein levels with concomitant compromised differentiation of ESCs during embryoid body culture. Chromatin immunoprecipitation experiments demonstrated that Zfp281 is required for Nanog binding to its own promoter, suggesting that Nanog-associated repressive complex(es) involving Zfp281 may fine-tune Nanog expression for pluripotency of ESCs.
Project description:Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver of these coordinated changes, known as lineage priming, in a process that exploits novel polycomb activities. We find that intragenic levels of the polycomb mark H3K27me3 anti-correlate with changes in transcription, irrespective of the gene's developmental trajectory or identity as a polycomb target. In contrast, promoter proximal H3K27me3 is markedly higher for PrEn priming genes. Consequently, depletion of this modification stimulates the degree to which ESCs are primed towards PrEn when challenged to differentiate, but has little effect on gene expression in self-renewing ESC culture. These observations link polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision.
Project description:Self-renewal and differentiation of embryonic stem cells (ESCs) are controlled by intracellular transcriptional factors and extracellular factor-activated signaling pathways. Transcription factor Oct4 is a key player maintaining ESCs in an undifferentiated state, whereas the Erk/MAPK pathway is known to be important for ESC differentiation. However, the manner in which intracellular pluripotency factors modulate extracellular factor-activated signaling pathways in ESCs is not well understood. Here, we report identification of a target gene of Oct4, serine/threonine kinase 40 (Stk40), which is able to activate the Erk/MAPK pathway and induce extraembryonic-endoderm (ExEn) differentiation in mouse ESCs. Interestingly, cells overexpressing Stk40 exclusively contribute to the ExEn layer of chimeric embryos when injected into host blastocysts. In contrast, deletion of Stk40 in ESCs markedly reduces ExEn differentiation in vitro. Mechanistically, Stk40 interacts with Rcn2, which also activates Erk1/2 to induce ExEn specification in mouse ESCs. Moreover, Rcn2 proteins are specifically located in the cytoplasm of the ExEn layer of early mouse embryos. Importantly, knockdown of Rcn2 blocks Stk40-activated Erk1/2 and ESC differentiation. Therefore, our study establishes a link between the pluripotency factor Oct4 and the Erk/MAPK signaling pathway, and it uncovers cooperating signals in the Erk/MAPK activation that control ExEn differentiation.
Project description:BackgroundThe development of somatic reprogramming, especially purely chemical reprogramming, has significantly advanced biological research. And chemical-induced extraembryonic endoderm-like (ciXEN) cells have been confirmed to be an indispensable intermediate stage of chemical reprogramming. They resemble extraembryonic endoderm (XEN) cells in terms of transcriptome, reprogramming potential, and developmental ability in vivo. However, the other characteristics of ciXEN cells and the effects of chemicals and bFGF on the in vitro culture of ciXEN cells have not been systematically reported.MethodsChemicals and bFGF in combination with Matrigel were used to induce the generation of ciXEN cells derived from mouse embryonic fibroblasts (MEFs). RNA sequencing was utilised to examine the transcriptome of ciXEN cells, and PCR/qPCR assays were performed to evaluate the mRNA levels of the genes involved in this study. Hepatic functions were investigated by periodic acid-Schiff staining and indocyanine green assay. Lactate production, ATP detection, and extracellular metabolic flux analysis were used to analyse the energy metabolism of ciXEN cells.ResultsciXEN cells expressed XEN-related genes, exhibited high proliferative capacity, had the ability to differentiate into visceral endoderm in vitro, and possessed the plasticity allowing for their differentiation into induced hepatocytes (iHeps). Additionally, the upregulated biological processes of ciXEN cells compared to those in MEFs focused on metabolism, but their energy production was independent of glycolysis. Furthermore, without the cocktail of chemicals and bFGF, which are indispensable for the generation of ciXEN cells, induced XEN (iXEN) cells remained the expression of XEN markers, the high proliferative capacity, and the plasticity to differentiate into iHeps in vitro.ConclusionsciXEN cells had high plasticity, and energy metabolism was reconstructed during chemical reprogramming, but it did not change from aerobic oxidation to glycolysis. And the cocktail of chemicals and bFGF were non-essential for the in vitro culture of ciXEN cells.
Project description:Most of our current knowledge regarding early lineage specification and embryo-derived stem cells comes from studies in rodent models. However, key gaps remain in our understanding of these developmental processes from nonrodent species. Here, we report the detailed characterization of pig extraembryonic endoderm (pXEN) cells, which can be reliably and reproducibly generated from primitive endoderm (PrE) of blastocyst. Highly expandable pXEN cells express canonical PrE markers and transcriptionally resemble rodent XENs. The pXEN cells contribute both to extraembryonic tissues including visceral yolk sac as well as embryonic gut when injected into host blastocysts, and generate live offspring when used as a nuclear donor in somatic cell nuclear transfer (SCNT). The pXEN cell lines provide a novel model for studying lineage segregation, as well as a source for genome editing in livestock.
Project description:At the time of implantation in the maternal uterus, the mouse blastocyst possesses an inner cell mass comprising two lineages: epiblast (Epi) and primitive endoderm (PrE). Representative stem cells derived from these two cell lineages can be expanded and maintained indefinitely in vitro as either embryonic stem (ES) or XEN cells, respectively. Here we describe protocols that can be used to establish XEN cell lines. These include the establishment of XEN cells from blastocyst-stage embryos in either standard embryonic or trophoblast stem (TS) cell culture conditions. We also describe protocols for establishing XEN cells directly from ES cells by either retinoic acid and activin-based conversion or by overexpression of the GATA transcription factor Gata6. XEN cells are a useful model of PrE cells, with which they share gene expression, differentiation potential and lineage restriction. The robust protocols for deriving XEN cells described here can be completed within 2-3 weeks.
Project description:The histone H3 Lys 9 (H3K9) methyltransferase Eset is an epigenetic regulator critical for the development of the inner cell mass (ICM). Although ICM-derived embryonic stem (ES) cells are normally unable to contribute to the trophectoderm (TE) in blastocysts, we find that depletion of Eset by shRNAs leads to differentiation with the formation of trophoblast-like cells and induction of trophoblast-associated gene expression. Using chromatin immmunoprecipitation (ChIP) and sequencing (ChIP-seq) analyses, we identified Eset target genes with Eset-dependent H3K9 trimethylation. We confirmed that genes that are preferentially expressed in the TE (Tcfap2a and Cdx2) are bound and repressed by Eset. Single-cell PCR analysis shows that the expression of Cdx2 and Tcfap2a is also induced in Eset-depleted morula cells. Importantly, Eset-depleted cells can incorporate into the TE of a blastocyst and, subsequently, placental tissues. Coimmunoprecipitation and ChIP assays further demonstrate that Eset interacts with Oct4, which in turn recruits Eset to silence these trophoblast-associated genes. Our results suggest that Eset restricts the extraembryonic trophoblast lineage potential of pluripotent cells and links an epigenetic regulator to key cell fate decision through a pluripotency factor.