Unknown

Dataset Information

0

Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition.


ABSTRACT: An acoustic plasmon mode in a graphene-dielectric-metal structure has recently been spotlighted as a superior platform for strong light-matter interaction. It originates from the coupling of graphene plasmon with its mirror image and exhibits the largest field confinement in the limit of a sub-nm-thick dielectric. Although recently detected in the far-field regime, optical near-fields of this mode are yet to be observed and characterized. Here, we demonstrate a direct optical probing of the plasmonic fields reflected by the edges of graphene via near-field scattering microscope, revealing a relatively small propagation loss of the mid-infrared acoustic plasmons in our devices that allows for their real-space mapping at ambient conditions even with unprotected, large-area graphene grown by chemical vapor deposition. We show an acoustic plasmon mode that is twice as confined and has 1.4 times higher figure of merit in terms of the normalized propagation length compared to the graphene surface plasmon under similar conditions. We also investigate the behavior of the acoustic graphene plasmons in a periodic array of gold nanoribbons. Our results highlight the promise of acoustic plasmons for graphene-based optoelectronics and sensing applications.

SUBMITTER: Menabde SG 

PROVIDER: S-EPMC7895983 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition.

Menabde Sergey G SG   Lee In-Ho IH   Lee Sanghyub S   Ha Heonhak H   Heiden Jacob T JT   Yoo Daehan D   Kim Teun-Teun TT   Low Tony T   Lee Young Hee YH   Oh Sang-Hyun SH   Jang Min Seok MS  

Nature communications 20210219 1


An acoustic plasmon mode in a graphene-dielectric-metal structure has recently been spotlighted as a superior platform for strong light-matter interaction. It originates from the coupling of graphene plasmon with its mirror image and exhibits the largest field confinement in the limit of a sub-nm-thick dielectric. Although recently detected in the far-field regime, optical near-fields of this mode are yet to be observed and characterized. Here, we demonstrate a direct optical probing of the plas  ...[more]

Similar Datasets

| S-EPMC5890177 | biostudies-literature
| S-EPMC3236244 | biostudies-literature
| S-EPMC9330160 | biostudies-literature
| S-EPMC7313702 | biostudies-literature
| S-EPMC5626679 | biostudies-literature
| S-EPMC3773621 | biostudies-literature
| S-EPMC7494446 | biostudies-literature
| S-EPMC8756573 | biostudies-literature
| S-EPMC9194699 | biostudies-literature
| S-EPMC3313616 | biostudies-other