Unknown

Dataset Information

0

Neuronal fragile X mental retardation protein activates glial insulin receptor mediated PDF-Tri neuron developmental clearance.


ABSTRACT: Glia engulf and phagocytose neurons during neural circuit developmental remodeling. Disrupting this pruning process contributes to Fragile X syndrome (FXS), a leading cause of intellectual disability and autism spectrum disorder in mammals. Utilizing a Drosophila FXS model central brain circuit, we identify two glial classes responsible for Draper-dependent elimination of developmentally transient PDF-Tri neurons. We find that neuronal Fragile X Mental Retardation Protein (FMRP) drives insulin receptor activation in glia, promotes glial Draper engulfment receptor expression, and negatively regulates membrane-molding ESCRT-III Shrub function during PDF-Tri neuron clearance during neurodevelopment in Drosophila. In this context, we demonstrate genetic interactions between FMRP and insulin receptor signaling, FMRP and Draper, and FMRP and Shrub in PDF-Tri neuron elimination. We show that FMRP is required within neurons, not glia, for glial engulfment, indicating FMRP-dependent neuron-to-glia signaling mediates neuronal clearance. We conclude neuronal FMRP drives glial insulin receptor activation to facilitate Draper- and Shrub-dependent neuronal clearance during neurodevelopment in Drosophila.

SUBMITTER: Vita DJ 

PROVIDER: S-EPMC7896095 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10041173 | biostudies-literature
| S-EPMC3682409 | biostudies-literature
| S-EPMC10028983 | biostudies-literature
| S-EPMC2927779 | biostudies-literature
| S-EPMC7511717 | biostudies-literature
| S-EPMC3143227 | biostudies-literature
| S-EPMC3518385 | biostudies-literature
| S-EPMC3380850 | biostudies-literature
| S-EPMC10629620 | biostudies-literature
| S-EPMC1887586 | biostudies-literature