Unknown

Dataset Information

0

Genome-wide diversity and habitat underlie fine-scale phenotypic differentiation in the rainbow darter (Etheostoma caeruleum).


ABSTRACT: Adaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal-limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold-water species at-risk. We present a study of rainbow darters (Etheostoma caeruleum) in which we evaluated the importance of genetic variation on adaptive potential and determined responses to extreme thermal stress. We compared fine-scale patterns of morphological and thermal tolerance differentiation across eight sites, including a unique lake habitat. We also inferred contemporary population structure using genomic data and characterized the relationship between individual genetic diversity and stress tolerance. We found site-specific variation in thermal tolerance that generally matched local conditions and morphological differences associated with lake-stream divergence. We detected patterns of population structure on a highly local spatial scale that could not be explained by isolation by distance or stream connectivity. Finally, we showed that individual thermal tolerance was positively correlated with genetic variation, suggesting that sites with increased genetic diversity may be better at tolerating novel stress. Our results highlight the importance of considering intraspecific variation in understanding population vulnerability and stress response.

SUBMITTER: Oliveira DR 

PROVIDER: S-EPMC7896715 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide diversity and habitat underlie fine-scale phenotypic differentiation in the rainbow darter (<i>Etheostoma caeruleum</i>).

Oliveira Daniel R DR   Reid Brendan N BN   Fitzpatrick Sarah W SW  

Evolutionary applications 20201007 2


Adaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal-limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold-water species at-risk. We present a study of rainbow darters (<i>Etheostoma caeruleum</i>) in whi  ...[more]

Similar Datasets

| S-EPMC8717317 | biostudies-literature
| S-EPMC5115663 | biostudies-other
2014-05-22 | GSE57865 | GEO
2014-05-22 | GSE57394 | GEO
2014-05-22 | E-GEOD-57865 | biostudies-arrayexpress
| S-EPMC5077097 | biostudies-literature
2014-05-22 | E-GEOD-57394 | biostudies-arrayexpress
| PRJNA248286 | ENA
| PRJNA248288 | ENA
| PRJNA248416 | ENA